RESEARCH ARTICLE

Magnetic Fields Induce Changes in Photosynthetic Pigments Content in Date Palm (Phoenix dactylifera L.) Seedlings

The Open Agriculture Journal 29 Jan 2009 RESEARCH ARTICLE DOI: 10.2174/1874331500903010001

Abstract

Growth, development and plants productivity are usually affected by photosynthetic pigments activity. Magnetic fields are known to induce biochemical changes and could be used as a stimulator for growth related reactions including affecting photosynthetic pigments. The impact of magnetic field strengths on chlorophyll and carotenoids were investigated in this study through the use of date palm (Phoenix dactylifera L.) seedlings. To study the effects of magnetic treatments on photosynthetic pigments, date palm seedlings were exposed to magnetic fields in two experiments. In the first experiment, seedlings were treated with static magnetic field at three levels of (10, 50 and 100 mT) and different durations (30, 60, 180, 240 and 360 min). At the second experiment, seedlings were treated with alternating magnetic field at 1.5 T for different durations (1, 5, 10 and 15 min). The photosynthetic pigments (chlorophyll a, chlorophyll b, carotenoids and total pigments) were assayed using spectrophotometric methods. Results indicated that pigments content (chlorophyll a, chlorophyll b, carotenoids and total pigments) was significantly increased under static magnetic field. The highest measurements were recorded at 100 mT, after 360 min of exposure. On the other hand, alternating magnetic field has decreased photosynthetic pigments content after 10 min of treatment with 1.5 T. Low magnetic field doses had a simulative effect on photosynthetic pigments whereas high doses had a negative effect. Chlorophyll a and carotenoids were more affected than chlorophyll b. Magnetic fields treatment could be used to enhance plant growth and productivity.

Keywords: Date palm, magnetic field, photosynthetic pigments, chlorophyll, carotenoids.
Fulltext HTML PDF
1800
1801
1802
1803
1804