RESEARCH ARTICLE


Effect of Different Tannery Sludge Composts on the Production of Ryegrass: A Pot Experiment



Adelaide Perdigão1, 2, 3, Francisco Marques1, 2, José L. S. Pereira1, 2, *
1 Agrarian School of Viseu, Polytechnic Institute of Viseu, Quinta da Alagoa, 3500-606 Viseu, Portugal
2 Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
3 CERNAS-IPV Research Centre, Polytechnic Institute of Viseu, Campus Politécnico, Repeses, 3504-510 Viseu, Portugal


Article Metrics

CrossRef Citations:
0
Total Statistics:

Full-Text HTML Views: 304
Abstract HTML Views: 132
PDF Downloads: 200
ePub Downloads: 69
Total Views/Downloads: 705
Unique Statistics:

Full-Text HTML Views: 169
Abstract HTML Views: 101
PDF Downloads: 123
ePub Downloads: 55
Total Views/Downloads: 448



Creative Commons License
© 2022 Perdigão et al.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

* Address correspondence to this author at the Agrarian School of Viseu, Polytechnic Institute of Viseu, Quinta da Alagoa, 3500-606 Viseu, Portugal; Tel: +351232446600; Fax: +351232426536; E-mail: jlpereira@esav.ipv.pt


Abstract

Background:

Tannery industry produces high amounts of nutrient rich sludges that can be used as organic fertilizers.

Objective:

The aim of this study was to evaluate the fertilizing potential of composted tannery sludge.

Methods:

A pot experiment was carried out with ryegrass (Lolium perenne L.) to test two different composts: 2.0 kg dry matter (DM) tannery fatty sludge + 1.5 kg DM sheep manure + 1.5 kg DM wheat straw (Compost 1) and 2.0 kg DM tannery sludge + 1.5 kg DM sheep manure + 1.5 kg DM wheat straw (Compost 2). Five treatments, with three replicates each, were assigned: Control (C); Compost 1 at 6 t (C1-6) and 12 t (C1-12) DM ha-1; Compost 2 at 6 t (C2-6) and 12 t (C2-12) DM ha-1. Each treatment was applied in a pot and mixed with 5 kg of sieved soil (<2 mm).

Results:

Results showed that production of DM ranged between 1.2 t DM ha-1 for C1-6 and 2.4 t DM ha-1 for C2-12. The highest B, Na and N levels in ryegrass was observed in C2-12, with 175 mg kg-1 DM, 9 g kg-1 DM and 30 g kg-1 DM, respectively. At the end of the experiment no differences were observed between treatments for C, N, P2O5, and K2O levels. Differences were observed at Zn level ranged between 101 mg kg-1 DM for C1-6 and 71 mg kg-1 DM for C2-12.

Conclusion:

The C2-12 treatment was the best because induces higher DM production and nutrients in ryegrass and without dangerous concentration of heavy metals in soil. Composted waste from the tannery industry is a good source of nutrients for agriculture.

Keywords: Composting, Heavy metals, Nitrogen uptake, Organic fertilizer, Ryegrass, Tannery sludge.