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Abstract: Photoluminescence spectroscopic probes offer the potential for differentiation among plant species in real-time. 

Spectral emission signatures (excitation at 365 nm) from three different pH (2.2, 7.5 and 12.5) phosphate buffered saline 

(PBS) extracts from two grasses, Sporobolus flexuosus (Thurb. ex Vasey) Rydb., [mesa dropseed], and Pleuraphis mutica 

Buckley [tobosa], two forbs, Dimorphocarpa wislizenii (Engelm.) Rollins [spectacle pod], and Sphaeralcea incana Torrey 

[pale globemallow], and leaves and twigs from two shrubs Flourensia cernua DC. [tarbush], and Atriplex canescens 

(Pursh) Nutt., [fourwing saltbush] were examined. Since pH has been shown to be pivotal in affecting extraction effi-

ciency of other plant compounds pH seemed appropriate as an additional dimension within our multi-way principal com-

ponent analysis (MPCA) to differentiate among six different plant species. In particular, MPCA allowed differentiation 

between Sporobolus and Pleuraphis that was not possible using only principal component analysis (PCA). This research 

suggests MPCA may be a more appropriate tool than PCA when attempting to discriminate among plant species. 
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1. INTRODUCTION 

 Determining standing crop composition and botanical 
composition of herbivore diets are the first two steps to op-
timize free-ranging herbivore nutrition [1]. Knowing if the 
standing crop contains toxic plants [2-4] or species pivotal to 
maintaining a desired landscape use [5] are key to managing 
the plant-animal interface. Using plant spectral signatures to 
distinguish plant life forms [6] and even genotypes [7] may 
provide a valuable tool for botanical analysis.  

 Previous fluorometry research has demonstrated the use-
fulness of spectroscopic methods for differentiating among 
pre- [8-10] and post-digested [6, 11] species of rangeland 
vegetation. Though Near Infrared Spectroscopy (NIRS) [12, 
13] has been the automated optical method of choice in 
range animal ecology research, fluorometry [14] appears 
promising because of its practical differences (Table 1). 
NIRS [19] as well as fluorometry have the potential to dif-
ferentiate among plant species. However, within plant life 
forms, i.e., grasses, forbs and shrubs; it may be challenging 
to fluorometrically identify individual species without em-
ploying appropriate analytical tools. This challenge can be 
addressed efficiently using mathematical algorithms that take  
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advantage of fluorometric data’s multidimensional character-
istics. Chemometric methods enable the analysis of complex 
data into sample constituents [20-22]. Distinguishing among 
species may require data sets with higher ordered dimen-
sionality and use of chemometric procedures involving 
multi-way principal component analysis (MPCA) developed 
by Nomikos and MacGregor [23] rather than the simpler 
mathematical approach involving principal component 
analysis (PCA) [24-26], applicable to two-dimensional 
measurements. 

 These data were collected as part of a previous study to 

determine the effectiveness of PCA to discriminate among 

plant species. However, in the study by Danielson et al. [9] 

PCA was unable to adequately discriminate among visually 

similar spectral signatures, specifically, differentiation be-

tween two grass species was problematic. The objective of 

this research was to reevaluate a subset of Danielson’s data 

using MPCA to determine if it is superior to PCA in differ-
entiating among visually similar spectral signatures. 

2. MATERIALS AND METHODS 

 Plants species potentially consumed by sheep and beef 
cattle [27-29] were harvested between 6 August and 2 Octo-
ber 1996 on the United States Department of Agriculture’s 
Jornada Experimental Range (USDA-ARS-JER) located in 
south-central New Mexico, near Las Cruces. The harvested 
plants represented specimens having similar physiological 
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maturity (phenology) and were harvested from several dif-
ferent locations on the landscape to provide as much soil and 
topographic variability as possible. Nine plants from each of 
six different species were harvested: two grasses, Sporobolus 
flexuosus (Thurb. ex Vasey) Rydb., [mesa dropseed], and 
Pleuraphis mutica Buckley [tobosa]; two forbs, Dimorpho-
carpa wislizenii (Engelm.) Rollins [spectacle pod], and 
Sphaeralcea incana Torrey [pale globemallow]; and two 
shrubs consisting of leaf and stem material, Flourensia cer-
nua DC. [tarbush] leaves and Atriplex canescens (Pursh) 
Nutt., [fourwing saltbush] leaves and current years stem 
growth (twigs) were obtained. The plant nomenclature fol-
lows that of Allred [30].  

 The 36 herbaceous plants, nine from each of four species, 
were clipped at ground-level while leaves from nine tarbush 
plants and leaves and twigs from nine fourwing saltbush 
plants were stripped from branches giving a total of 54 
unique plant samples to be analyzed. Detailed sample collec-
tion and preparation protocol can be found in Danielson et 
al. [9]. Harvested plant materials were oven-dried to a con-
stant mass at 60

o
 C before the contents of each of the 54 bags 

were ground to pass a 1-mm micro-Wiley mill screen. The 
ground plant material was collected in labeled plastic vials 
and stored at room

 

temperature. Immediately prior to 
fluorometric analysis, the vial contents were re-dried at 60

o
 

C and triplicate 0.15 g samples of the dried material from 
each of the 54 vials were weighed into labeled glass culture 
tubes, sealed with Parafilm

®
, and stored at room temperature. 

A 10 mL volume of phosphate buffered saline (PBS), con-

taining sodium azide (to inhibit microbial growth), at one of 
three pH values (2.2, 7.5, or 12.5) was added to each of the 
162 tubes. These pH values were chosen to ensure that the 
highest buffering capacity of the solvent would be main-
tained following the extraction procedure thus preventing 
changing of the extract’s pH. Details of how the PBS and 
three pH solutions were made have previously been pub-
lished [9]. The filled tubes were shaken for one hour at 900 
RPM followed by filtration through Whatman No. 4 paper 
into clean, labeled tubes, sealed with Parafilm

®
, and stored at 

3
o
 C until analysis. 

 Besides being environmentally safe, PBS was used to 
minimize chlorophyll extraction [9] and to minimize pre-and 
post- spectral filtering effects. Danielson et al. [9] reported 
the need to dilute the resulting plant extract solutions (a pH 
2.2, 7.5, and 12.5) by factors of 12.50%, 6.25%, and 3.13%, 
eg. 1 ml of extract was diluted to a total of 8, 16, and 32 ml 
of the appropriate pH buffered solutions, respectively. Re-
search has revealed that extraction solvents having different 
pH values can be useful in extracting various compounds 
including pectin [31] and glutaric, malic and maleic acids 
found in plants [32]. Therefore, extracting solution pH was 
included as a variable in the present study. 

 Excitation radiation of 365 nm was selected from a 500 
W Xe/Hg-arc lamp using a 0.25 m monochromator (Melles 
Griot, Model HR-20, [9]). The emitted radiation was col-
lected and transferred using F-matching transfer optics [33] 
to the entrance slit of a 1.0 m focal length monochromator 

Table 1. Six Practical Considerations when Comparing Near Infrared Reflectance (NIRS)
a
 to Fluorometry

b 

Consideration NIRS Fluorometry 
Practical Implication for Using 

Fluorometry Instead of NIRS 

Refer-

ences 

Sample  

properties 

Many materials absorb, linear 

dynamic range of < 1.5 orders 

of magnitude. 

Fewer materials fluoresce, linear dy-

namic range as great as six orders of 

magnitude. 

Aids in specificity and accuracy of iden-

tification at trace to percentage levels of 

concentration. 

[16] 

Equipment Limited to laboratory. Potential for field portability. 
Provide real-time data for making man-

agement decisions. 
[17] 

Measurement 
Vibrational energies (  > 700 

nm). 

Electron transitions resulting from excita-

tion energies between 190 to 800 nm. 
Greater discernment specificity. [18] 

Extraction sol-

vent (for solution 

analyses) 

Must be transparent. Polar and non-polar solvents. 
Solvent used to prepare samples can 

become the first step in discrimination. 
[9] 

Identification 

algorithms 

Specificity important for 

accuracy, i.e., calibration 

samples and unknowns must 

show similar variability. 

Less specificity required for equal accu-

racy, i.e., calibration samples and un-

knowns do not have to have the same 

variability. 

Allows unknown samples to be accu-

rately discernable even when calibration 

algorithms do not include the extent of 

variability shown in the unknowns mak-

ing the methodology robust for predic-

tion. 

[10] 

Data  

dimensionality 

Only two dimensions. 

Signal intensity results only 

from reflection vs. wave-

length allowing many possi-

bilities coming from blended 

chemical structures. 

Up to five dimensions. Intensity - func-

tion of three parameters involving spe-

cific chemical structures affecting: exci-

tation wavelength ( ), emission ( ), and 

time expressed as polarization anisot-

ropy. 

The greater the number of dimensions the 

greater the techniques power to discrimi-

nate among specie differences for accu-

rate discernment. 

[16] 

a[15].  
b[14]. 
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equipped with a 1200 mm
 

holographic grating with a 1.7 nm 
bandpass (2.0 mm entrance and exit slit widths). Use of the 
holographic grating resulted in the Wood’s grating anomaly 
[34-36] being observed and it was left uncorrected. It mani-
fested itself as an apparent local minimum in all spectra at 
~515 nm. This study was not designed to determine the mo-
lecular species responsible for the various fluorometric sig-
natures; therefore, the uncorrected spectra reported using this 
system are not directly transferable to other spectroscopic 
configurations. Fluorometric instrumentation details have 
been previously described by Danielson et al. [9].  

 Data acquisition was accomplished using in-house soft-
ware developed using LabView

®
 5.0 (National Instruments). 

Data analysis utilized algorithms found in the PLS-Toolbox 
(Eigenvector Research, Wenatchee, WA) operated within 
MATLAB (Mathworks, Lowell, MA).  

2.1. Multi-Way Principal Component Analysis (MPCA)  

 The fluorescence emission data consisted of broad and 
superimposed spectral features from yet to be identified 
fluorophores within the 375-620 nm region of the spectrum. 
This technique neither enables a comprehensive molecular 
component level understanding of the spectral response 
curve (fingerprint) nor relies on the identification of the spe-
cific molecular species. However, this spectral approach has 
been found useful in differentiating among plants.  

 Earlier use of PCA by Danielson et al. [9] involved de-
composition of the two-dimensional data matrix (i.e., emis-
sion intensities at each of 247 wavelengths for each of the 
six plant species) into a collection of principal components 
and an error matrix. PCA can only deal with two-
dimensional data matrices. Conversely, MPCA enables 
analysis of three dimension data matrices.  

 Though statistically and mathematically similar to PCA, 
MPCA (also called unfolded PCA or U-PCA) involves the 
generation of a representation of the eigenvectors for the 
covariance or correlation matrix of the original measured 
variable data matrix [37]. Simply stated, MPCA enables the 
discernment of principal components within an entire data 
set that account for the variance present in those data and an 
effective reduction of the effective variables describing each 
sample. It should be noted that for both PCA and MPCA, the 
emission response curve or surface, respectively, is used in 
the analysis of the collected measurements thereby eliminat-
ing the need for any subjective selection of specific variables 
(e.g., wavelength or wavelength and pH). For a more de-
tailed discussion of the MPCA procedure, see Obeidat et al. 
[10] and cited references therein. Although there are other 
data analysis tools that can be applied to data sets with 
higher dimensionality (e.g., measured intensities as a func-
tion of more than one variable), previous use of PCA sug-
gested that an expanded form of the same approach would 
enable segregation of plants using emission intensities as a 
function of both wavelength and extracting solution pH. 

 Using MPCA makes it possible to differentiate, identify, 
and classify plant material without any a priori information 
[37-39]. In our data, pH served as the third dimension be-
cause of its usefulness in extracting different plant com-
pounds. The extracts from the six plant species used in this 
research were run independently at three pHs (2.2, 7.5, and 

12.5). This allowed us to build a two way data matrix at each 
pH with dimensions of 247 x 6 for total dimensionality of 
247 x 6 x 3.  

3. RESULTS AND DISCUSSION 

3.1. Observed Fluorescence  

 Spectra were normalized to their respective intensity 
maxima to enhance both the observed differences and simi-
larities among the six plant species. The 420 nm peak ob-
served at all three pHs (Fig. 1A, B and C) can be attributed 
to a Raman scattering band arising from the water based sol-
vent [9]. Efforts to eliminate this artifact through background 
correction yielded either sample-dependent under or over 
correction. This suggests the presence of a sample-dependent 
attenuation from pre- or post-filter effects by absorbing con-
comitant molecular species. Correction for this feature was 
not undertaken eliminating the ability to compare these data 
with similar fluorometric studies.  

3.2. Effect of Solvent pH on Fluorescence Spectra 

 The PBS extracts at the acidic pH (2.2) appeared to pro-
duce visually similar fluorescence spectra among the six 
plant species (Fig. 1A). In contrast, the solvents at a neutral 
pH of 7.5; (Fig. 1B) and an alkaline pH of 12.5; (Fig. 1C) 
produced spectral signatures with greater visual variation 
among the six plant species. Overall, fluorescence was ob-
served in two regions of the visible spectrum. One region 
exhibited a maximum between 440-470 nm (blue) with a 
shift to longer wavelengths (red shift) as pH was increased 
from 2.2 to 12.2 (Table 2). The other visually distinguishable 
region occurred at ~523 nm (green) but it did not exhibit a 
red shift with pH (Table 2). This suggests that blue-emitting 
fluorophore(s) exhibited greater pH dependence among the 
six different plant species than those emitting in the green.  

 The two grasses, mesa dropseed and tobosa, showed very 
similar fluorescence responses at pH 2.2 and pH 7.5 (Figs. 
2A and 2B) making them visually indistinguishable between 
375 and ~414 nm. This similarity thwarted PCA from being 
able to discern between these two plants [9].  

 Spectra obtained from spectacle pod extracts at pH 7.5 
demonstrated a significant increase in one or more com-
pounds that fluoresced in the green region (515-525 nm) of 
the spectrum compared to those components responsible for 
blue (375-498 nm) emission. Furthermore, spectacle pod at 
pH 7.5 did not exhibit the same red shift as did tarbush. Tar-
bush demonstrated an interesting characteristic in having the 
largest relative green wavelength (523 nm) emission among 
all the six plant species evaluated. The red shift of emission 
wavelength with increasing extraction pH can be seen in 
Table 2. These observations can be explained by extraction 
of a longer wavelength emitting fluorophore resulting in the 
measured red shift. In similar studies, Billa et al. [21] in 
wheat straw, sorghum fiber and sweet sorghum stalks dem-
onstrated pH dependent fluorescence spectra could be used 
to distinguish types of pulps used in the manufacture of vari-
ous papers. The alkaline treatment of grass and legumes with 
NaOH has been shown to release the phenolic compounds, 
ferulic acid and p-coumaric acid, from cell walls and these 
phenolics have therefore been proposed to be major con-
tributors to plant fluorescence in the blue-green region of the 
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visible spectrum [41]. Furthermore, these researchers con-
cluded that the relative concentrations of these molecules 
vary among various grass species, although this conclusion 
suggests genetic differences based on plant species. Other 
explanations of these variations await investigation, (e.g., 
differences related to changes in plant physiological state or 
a combination of other biotic or abiotic factors acting either 
independently or synergistically). Although plant chemical 
composition can vary due to many factors [42], it is un-
known how these chemical changes affect fluorometry. Vis-
ual evaluation of mean fluorescence spectra from the six 
different plant species at each pH (Fig. 1A through C) indi-
cated both similarities and differences.  

 The forbs (spectacle pod and pale globemallow) and 
shrubs (tarbush and fourwing saltbush) appear to exhibit 
higher extraction efficiency for green-emitting fluorophores 
regardless of pH (i.e., the ability to transfer one or more 
chemical compounds from the plant sample into the PBS 
solution). Additionally, shifts in wavelengths of maximum 
emission between each of the forbs and two shrubs towards 
the red (i.e., longer wavelengths) were observed. At neutral 
and high pH, the fluorescence responses in both forbs and 

shrubs appear to be visually distinguishable. Two distinctive 
peaks were observed from the data; one centered at ~450 nm, 
the other at ~525 nm.  

 A similar study reported by Johnson et al. [43] indicated 
peak similarities and differences for seven different types of 
plants consisting of five species each of grasses/sedges, coni-
fers, herbaceous dicotyledons, succulents, palms, woody 
deciduous dicotyledons, and woody evergreen dicotyledons. 
They observed for all 35 species a violet to blue emission 
peak with a maximum between 405-475 nm, while in about 
one third of their species they observed a predominant green 
emission peak between 510-550 nm.

 
Although not seen in 

the present study, one species of plant (Aloe barbadensis, a 
succulent) was reported to exhibit an emission maximum at 
568 nm [43]. It should be noted that samples in the Johnson 
study were prepared from the adaxial and abaxial surfaces of 
plant foliage while our samples were aqueous plant extracts 
from ground whole plants or plant parts. 

 There have been many suggestions as to what fluoropho-
res are responsible for the observed fluorescence spectra 
(Table 3). The UV-induced fluorescence of specific organic 
compounds known to be endogenous to plant leaves has also 

Table 2. Maximum Blue (424.0-491.2 nm)
a
 and Green (491.3-575.0 nm)

a
 Emission Wavelengths (  ) and Blue to Green Emission 

Wavelength  Ratios along with an Intensity Ratio of the Maximum Blue Emission Intensity to the Maximum Green Inten-

sity for Six Ground Arid Rangeland Forage Species Extracted with Buffered Saline at Three pH Values.  The Grasses, 

Forbs and Shrubs were Exposed to a 365 nm Excitation Wavelength from a 500 W Xe/Hg-Arc Lamp 

Grassses 
Sporobolus Flexuosus 

(Mesa Dropseed) 

Pleuraphis mutica 

(Tobosa) 

pH  
  

Ratio 

Intensity 

Ratio 
 

  

Ratio 

Intensity 

Ratio 

2.2 434 522 .83 3.27 439 518 .85 3.17 

7.5 438 520 .84 2.96 443 520 .85 2.70 

12.5 458 521 .88 2.34 458 521 .88 2.22 

Forbs 
Dimorphocarpa Wislizenii 

(Spectacle Pod) 

Sphaeralcea Incana 

(Pale Globemallow) 

pH  
  

Ratio 

Intensity 

Ratio 
 

  

Ratio 

Intensity 

Ratio 

2.2 442 522 .85 2.86 446 520 .86 3.23 

7.5 448 521 .86 1.37 453 519 .87 2.99 

12.5 469 521 .90 1.48 459 520 .88 2.16 

Shrubs 
Flourensia Cernua 

(Tarbush Leaves) 

Atriplex Canescens 

(Fourwing Saltbush 

Leaves Plus Current Years Twigs) 

pH  
  

Ratio 

Intensity 

Ratio 
 

  

Ratio 

Intensity 

Ratio 

2.2 444 521 .85 2.63 436 520 .84 2.87 

7.5 453 523 .87 1.67 446 521 .85 3.03 

12.5 466 522 .89 1.57 456 521 .88 2.91 

a[40]. 



Differentiating Among Plant Spectra by Combining pH The Open Agriculture Journal, 2011, Volume 5    5 

been reported. It should be noted with respect to the present 
study that coumarins tend to fluoresce more intensely in al-
kaline solutions while not at all in acidic solutions. Hence, 

these types of compounds may have contributed to the red-
shift observed in the present study. 

 

 

 

 

Fig. (1). Mean (n = 9) normalized emission spectra for phosphate buffer saline (PBS) extracts of two grasses, two forbs and two shrubs 

(leaves and current year’s twigs only for shrubs) at three pHs (A = 2.2; B = 7.5 and C = 12.5). 
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Fig. (2). Mean (n = 9) normalized emission spectra for phosphate buffered saline (PBS) extracts of A) Sporobolus flexuosus 
[Thurb.] Rydb., mesa dropseed, B) Pleuraphis mutica Buckley, tobosa at pH values of 2.2 (-–), 7.5 (•••), and 12.5 (- - -).  

 

Table 3. Plant Molecules Known to Fluoresce 

Molecules Emission Wavelength ( ) References 

Chlorophyll a 666 

Chlorophyll b 646 

[44] 

NAD(P)H 
430 (bound to proteins)  

& 460 (free form) 
 [45-47] 

FAD, FMN, Riboflavin 525 [45-47] 

Caffeic acid, Ferulic acid, Chlorogenic acid, Sinapic acid, (+) Catechin and Phyllo-

quinone (reduced form) Aesculetin, Scopoletin 
440  [47] 

t-stilbene, Rhaponticin 380-390 [47] 

Berberine, Quercetin 520-530  [47] 
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Fig. (3). Plot of PC scores showing six species (Sporobolus flexuosus (Spfl), Pleuraphis mutica (Plmu), Dimorphocarpa wislizenii (Diwi), 

Sphaeralcea incana (Spin), Flourensia cernua (Flce) and Atriplex canescens (Atca)) each with nine plants per species resulting from the ap-

plication of a multi-way principal component analysis (MPCA) data analysis of the pH-dependent emission spectra from each phosphate 

buffered saline solution extract of plant species samples. The three dimensions of the data set were signal intensity as a function of emission 

wavelength and extracting solution pH. The numbers correspond to samples from individual plants. Ellipsoids depict 95% confidence vol-

umes about the centroid projection of each plant species (see Table 4).  

 

Table 4. Confidence Surface Values (95%) for Each Species, see Fig. (3) 

Centroid of Each Elipsoid 95% Confidence Ellipsoidal Surfaces 

Score 1  Score 2 Score 3 Plant Species 
PC1 PC2 PC3 

Upper  Lower Upper Lower Upper Lower 

Sporobolus flexuosus (Mesa dropseed) -1.58 0.56 -0.27 -1.40 -1.76 0.82 0.30 -0.15 -0.39 

Pleuraphis mutica (Tobosa) -1.17 0.45 0.08 -0.78 -1.56 0.78 0.13 0.53 -0.36 

Dimorphocarpa wislizenii (Spectacle pod) 1.53 1.17 0.30 3.97 -0.91 1.89 0.46 0.64 -0.05 

Sphaeralcea incana (Pale globemallow) 0.03 -1.13 0.65 0.88 -0.82 -0.32 -1.95 1.47 -0.17 

Flourensia cernua (Tarbush leaves) 2.31 -0.45 -0.48 3.01 1.61 -0.05 -0.86 0.05 -1.01 

Atriplex canescens (Fourwing saltbush leaves plus 

current years twigs) 
-1.13 -0.60 -0.28 -0.60 -1.65 0.24 -1.45 0.39 -0.96 

 

 Our data suggest that using extraction solutions differing 
in pH may be a useful first step when attempting to distin-
guish among various plant species if MPCA procedures are 
used. Danielson et al. [9] determined that the scores of the 
first three PCs from a PCA model of emission spectra of 
solutions at each pH value enabled adequate separation 
among all plant species except for the two grasses while ac-
counting for more than 95% of the total variation within the 
extract spectral signature. However, separation of the two 
grasses (tobosa and mesa dropseed) remained unrealized.  

 Three two-way data matrices corresponding to each ex-
tract solution pH were concatenated into a single data matrix 
with three dimensions of 247 x 3 x 6. Application of MPCA 

to this matrix yielded a separation enhancement for all six 
plant extracts. This approach increased the dimensionality of 
the data set by incorporating data from all three pH extracts 
simultaneously enhancing separation among the six plant 
species (Fig. 3). This enabled the successful separation of all 
six species using scores from the first three PCs in an MPCA 
model in which 95% of the total variation was accounted for. 
This three dimensional data set was composed of the two–
way MPCA models using the first versus the second and the 
first versus the third PCs. Fig. (3) shows that by increasing 
the dimensionality of the data using three pH values the 
technique’s ability to separate fluorometric signatures im-
proved. Spectra from each of the 54 plants show the variabil-
ity around each of the six specie groupings (Fig. 3) is less 
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than that among the six species (Table 4). Ellipsoidal sur-
faces in Fig. (3) indicate volumes defined by 95% confi-
dence intervals relative to the centroid location of score pro-
jections of combined spectra from plants of a specific spe-
cies. Separation of ellipsoids then illustrates significant (i.e., 
>95% confidence) differences in processed spectra from 
different plant species while accounting for statistical differ-
ences between different plants of the same species. Specifi-
cally, the two grasses were spatially separated compared to 
PCA procedures in which the grasses were not clearly sepa-
rated, as previously reported by Danielson et al. [9]. The 
three-dimensional PC-score space resulting from the MPCA 
analysis suggests that the greater separation of the score vec-
tors in this three-dimensional principal component space 
among the six treatments is indicative of increased statistical 
differences among the corresponding sample spectra.  

 The next possible research step in evaluating the useful-
ness of MPCA would be an attempt to accurately different 
ate from among fluorometric data arising from known mix-
tures of plant species. If differentiation were possible and 
repeatable it would be logical to then investigate the useful-
ness of MPCA as a tool in differentiating among spectral 
fluorometric diet data obtained from free-ranging animals. 
Such information remains challenging to obtain except 
where highly skilled labor and money are both abundant. 
The utility of this approach has been suggested through pre-
liminary results published elsewhere [17]. 

4. CONCLUSIONS 

 This research using MPCA as a tool to differentiate 
among normalized fluorometric spectral data obtained from 
six plant species provided positive results. As the dimen-
sionality of the data set was increased to include solution pH 
as a third variable, it impacted the measured fluorescence 
signal by removing ambiguities in sample identification seen 
with PCA. Even without accounting for the source of varia-
tion among the individual plants within each of the six spe-
cies evaluated, MPCA was able to visually separate the six 
species. This suggests MPCA may be a promising tool for 
analyzing future fluorometric data. 
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