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Abstract: Catecholamines are produced by chromaffin cells of the adrenal medulla and adrenergic and dopaminergic 
neurons from tyrosine. Catecholamines regulate many vital physiological and metabolic responses because of the location 
of receptors. The impact of catecholamines is not limited to mammals; direct effects of natural catecholamines on bacteria 
have been researched extensively to understand the potential impact of these compounds on bacterial infections in 
humans. Catecholamines have increased the growth of bacteria, virulence-associated factors, and adhesins and increased 
biofilm formation. Beta-adrenergic agonists are similar in structure and pharmacological properties to natural 
catecholamines. Beta-adrenergic agonists enhance performance of finishing cattle during the final days prior to harvest. 
Responses to beta-adrenergic agonists include increased average daily gain, improved feed efficiency, and increased 
carcass lean. These responses have been observed as a direct effect to the animal; however, a review of the literature 
suggests that the response to beta-adrenergic agonists also could be mediated by a direct or indirect effect on ruminal 
microorganisms. Ractopamine hydrochloride increased fermentation in vitro, particularly with increased amounts of 
degradable intake protein. Inclusion of ractopamine hydrochloride in vivo decreased ruminal concentrations of ammonia 
and amino acid. The rumen is host to a large population of diverse microorganisms, and a direct impact of a synthetic 
catecholamine on the microbial population could potentially alter fermentation and the ruminant performance. Reviewing 
literature on catecholamines and their direct impact on microorganisms could lead to improved decisions regarding dietary 
supplementation of beta-adrenergic agonists, threreby increasing the growth performance response in ruminants.  
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1. INTRODUCTION 

 Catecholamines, which are naturally present in ruminants 
and other mammals, have a direct effect on the animal’s 
major organs, gut, and other tissues. However, the impact of 
catecholamines is not limited to animals; bacteria have been 
observed to be directly influenced by the presence of cate-
cholamines. Beta-adrenergic agonists, which are synthetic 
catecholamines, currently are used to enhance cattle per-
formance prior to harvest. Beta-adrenergic agonists are 
orally active and have been noted for their ability to reparti-
tion energy from adipose tissue to lean tissue. Orally 
administered products enter the rumen and can potentially 
interact with ruminal microorganisms, thereby influencing 
fermentation. However, there is limited research regarding 
the effects of β-adrenergic agonists on the rumen and its 
microorganisms. By better understanding how this com-
pound affects ruminal fermentation, nutritionists can poten-
tially enhance its use in livestock diets. 

2. CATECHOLAMINES 

 Natural catecholamines, which include epinephrine, nore-
pinephrine, and dopamine, contain a catechol nucleus formed 
by a benzene ring with adjacent hydroxyl groups and an  
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amine group [1]. Epinephrine, norepinephrine, and dopamine 
are synthesized by chromaffin cells of the adrenal medulla. 
Norepinephrine and dopamine are synthesized by adrenergic 
and dopaminergic neurons. Catecholamines are synthesized 
from tyrosine, which is obtained from dietary sources or 
synthesized from phenylalanine in the liver and other tissues. 
Catecholamines are stored in secretory granules in the adre-
nomedullay cells. Norepinephrine and epinephrine secreted 
by the adrenomedullay cells bind to receptors on adipose, 
cardiovascular, hepatic, muscular, and pancreatic tissues to 
regulate metabolic processes and also to nerve cell receptors 
to influence neurogenic responses [1]. The primary source of 
epinephrine is the adrenal medulla, whereas norepinephrine 
is synthesized in the adrenal medulla and by adrenergic 
neurons distributed throughout the body [1]. Catecholamine 
receptors are classified as α- and β-adrenergic receptors. 
These receptors have been further classified as α1, α2, β1, and 
β2 on the basis of the physiological response they mediate in 
animals and the identification of chemical antagonists [1]. 
These receptors are found throughout the body, but the 
presence of β-adrenergic receptors in the gut is of particular 
interest for this review paper.  

3. BETA-ADRENERGIC AGONISTS 

 Beta-adrenergic agonists are phenethanolamine com-
pounds that physically and pharmacologically resemble natu-
ral catecholamines, such as norepinephrine and epinephrine 
[2]. Critical activities affected by natural catecholamines and 
possibly by synthetic catecholamines, such as ractopamine 
hydrochloride, include inotropic and chronotropic effects on 
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heart contractions, vasoconstriction and dilation of blood 
vessels, contractions of and secretions by the gastrointestinal 
tract, secretion of insulin from the pancreas, and stimulation 
of lipolysis, glycogenolysis, and glycolysis [3]. Because of 
their involvement in heart contractions and vasoconstriction 
and dilation of blood vessels, β-adrenergic agonists have 
been a research focus in human health to relieve asthma and 
alter cardiovascular function, leading to the development of 
synthetic compounds that bind to β-adrenergic receptors. 
Beta-adrenergic receptors are located in the plasma mem-
brane of almost all types of mammalian cells and are stimu-
lated physiologically by catecholamines [4]. Beta-adrenergic 
receptors consist of seven membrane-spanning regions with 
three internal and three external loops. The β-adrenergic 
agonist binds to the receptor located in the center of the 
seven transmembrane domains, forming an agonist-receptor 
complex that activates the Gs protein. The α-subunit of the 
Gs protein then activates adenylate cyclase, and this enzyme, 
along with adenosine triphosphate, creates cyclic adenosine 
monophosphate. Cyclic adenosine monophosphate binds to 
the regulatory subunit of protein kinase A, causing its 
activation and leading to phosphorylation of intracellular 
proteins. The phosphorylation activates some intracellular 
proteins and inactivates others, leading to increased muscle 
accretion and decreased adipose deposition [4]. Effects of the 
binding of β-adrenergic agonist receptors include stimulation 
of glycogen phosphorylase and inhibition of glycogen 
synthesis, which result in production of glucose from 
glycogen stores and stimulation of lipolysis, causing the 
release of free fatty acids from adipose tissue [5]. Beta-
adrenergic receptors are categorized into three subtypes (β1, 
β2, and β3), but there few compounds bind almost exclu-
sively to one type of receptor [5]. Responses to β-adrenergic 
agonists seem to be greater in ruminants than in single-
stomached animals [5]. Mersmann [4] suggested that species 
that had been intensively selected for growth may have less 
response to β-adrenergic agonists because they are closer to 
their maximal growth potential. Also, β-adrenergic agonists 
may not be as effective at targeting specific tissues in some 
species compared with others. Bell et al., [2] found that 
maximum response to β-adrenergic agonists is not achieved 
when they are used in conjunction with diets that are 
inadequate in total protein or amino acids. There is less 
response to β-adrenergic agonists in young, rapidly growing 
animals, in which muscle growth is rapid and lipid accretion 
is low. Response to β-adrenergic agonists in adipose tissue 
appears to be driven by the tendency of finishing animals to 
deposit carcass fat at a higher rate than lean tissue [5].  
 Beta-adrenergic agonists are fed during the last 20 to 42 
days before harvest to increase muscle accretion and reduce 
fat deposition [4]. Researchers have observed that β-
adrenergic agonists improve average daily gain, efficiency, 
and carcass weight in cattle [6-8]. The two β-adrenergic 
agonist compounds approved by the U.S. Food and Drug 
Administration for use in cattle are ractopamine hydrochlo-
ride (Optaflexx®, Elanco Animal Health, Indianapolis, IN) 
and zilpaterol hydrochloride (Zilmax®, Intervet Inc., 
Millsboro, DE). Ractopamine hydrochloride and zilpaterol 
hydrochloride have been noted to increase rate of gain, 
improve feed efficiency, and decrease carcass fat when fed 
during the final 28 to 42 days [6, 9] and final 20 to 40 days 
[8, 10], respectively, before slaughter. 

4. CATECHOLAMINES AND BACTERIA 

 In the 1920s, the first purified catecholamine, adrenaline, 
was used to treat a variety of illnesses. However, not long 
after it first use, patients with no prior bacterial infections 
began to develop bacterial sepsis [11]. The development of 
bacterial infection in these patients was linked to conta-
minated glass syringes, but it was noted that the dose of 
Clostridium perfringens needed to cause infection was 
reduced more than four logs in the presence of therapeutic 
levels of adrenaline [11]. Reports dating as far back as the 
1930s noted increased bacterial proliferation following 
adrenaline administration. The change in bacterial growth 
centered solely on the impact of adrenaline on the host, 
described as changes in host immunity or vasoconstriction 
that could facilitate the proliferation of bacteria. Reports of 
the influence of stress on bacterial infections also have 
pointed to the ability of catecholamines to suppress the 
immune system as the mode of action for increased bacterial 
growth. However, over the past two decades, endocrinolo-
gists have researched the direct effects of catecholamines on 
bacterial growth [12]. This novel research revealed that 
various catecholamines directly increased growth of Gram-
negative bacteria, including norepinephrine, epinephrine, 
dopamine, and dopa, to directly influence growth of Gram-
negative bacteria, including Escherichia coli, Yersinia 
enterocolitica, and Pseudomonas aeruginosa. Freestone  
et al., [13] evaluated a greater range of bacterial species and 
observed that the growth response to catecholamines was 
widespread among Gram-negative and Gram-positive 
bacteria. However, the increase in growth depended on the 
type and concentration of catecholamine to which the 
bacteria were exposed. O’Donnell et al., [14] observed that 
in vitro bacterial growth response to norepinephrine was 
dependent on the inoculum concentration of the bacteria 
[14]. Norepinephrine induced growth in small inoculation  
of bacteria previously reported to be unaffected by the 
catecholamine. O’Donnell et al., [14] found cultures of 
Klebsiella pneumonia, Pseudomonas aeruginosa, 
Enterbacter cloacae, Shigella sonnei, and Staphylococcus 
aureus grown using low initial inoculums density had shorter 
lag times and increased bacterial growth (CFU/ml) in the 
presence of norepinephrine. The results from O’Donnell  
et al., [14] and Freestone et al., [13] suggest that the 
response of bacteria to catecholamines is influenced by the 
combination of bacteria species and catecholamine, and the 
initial inoculums density of the bacteria. The results of 
O’Donnell et al., [14] agree with previous observations 
reported by Lyte [11] where infectious dose of Clostridium 
perfringens was lowered more than four logs in the presence 
of adrenaline. Freestone et al., [15] observed that norepine-
phrine and dopamine were more potent at inducing growth 
of Escherichia coli O157:H7 and Salmonella enterica, 
whereas epinephrine was an antagonist of norepinephrine 
and dopamine growth responsiveness in Yersinia entero-
colitica. Freestone et al., [15] speculated the norepinephrine 
and dopamine were more stimulatory as a result of being 
released from norepinephrine- and dopamine-containing 
neurons in the enteric nervous system. De Champlain [16] 
administered 6-hydroxydopamine (6-OHDA) to rats, result-
ing in an increased level of noradrenaline, and found that the 
neurophysiologic conditions of the host can lead to major 
shifts in microflora in the gastro-intestinal tract. Twenty-four 
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hours after administering 6-OHDA to rats, De Champlain 
[16] noted a three to five log increase of Gram-negative 
bacteria in the gut. Other researchers noted similar 
stimulatory effects of naturally occurring catecholamines on 
growth of Gram-negative bacteria [17, 18]. Belay and 
Sonnenfeld [18] evaluated the effects of catecholamines on 
in vitro growth of pathogenic bacteria and noted that 
norepinephrine and dopamine increased growth to the 
greatest extent in Pseudomonas aeruginosa and Klebsiella 
pneumoniae. Epinephrine and isoproterenol also increased 
growth of these bacteria, but to a lesser degree. Growth of 
Staphylococcus aureus increased in the presence of 
norepinephrine, but to a lesser extent than Gram-negative 
bacteria. Sonnenfeld [18] concluded that growth was 
enhanced by the addition of catecholamines but was 
dependent on the catecholamine and the bacterial species. In 
contrast, Belay et al., [19] tested other pathogenic bacterial 
species, including Porphyromonas gingivalis, Bacteriodes 
fragilis, Shigella boydii, Shigella sonnie, Enterobacter sp., 
and Salmonella cholerasuis, and found no enhanced growth 
with addition of catecholamines. These results further 
support the conclusion that catecholamines’ influence on 
bacterial growth is dependent on bacterial species and initial 
inoculum density. Catecholamines also are known for their 
ability to influence populations of oral bacteria [20]. Roberts 
et al., [20] studied bacteria common to the oral cavity of 
humans and found that supplementing bacteria with natural 
catecholamines produced by the human body resulted in 
increased growth in more than half the bacteria tested. They 
concluded that natural catecholamines have a direct effect on 
oral bacteria, again suggesting that response varies among 
bacterial species. Besides inducing bacterial growth, 
catecholamines have been observed to increase production of 
virulence-associated factors such as Shiga-like toxins [21], 
increase expression of K99 pilus adhesions and virulence-
related factors [22], and increase biofilm formation [23].  
 Researchers also have observed the presence of mamma-
lian hormones in microbial and speculate the role of 
catecholamines in microbial cell involves intercellular 
communication [24, 25]. Lyte and Ernest [12] stated the 
mechanism for Gram-negative bacterial growth induced by 
catecholamines was non-nutritional and possibly receptor 
mediated. Kinney et al., [17] observed that catecholamines 
function as siderophores by chelating iron, which gives an 
advantage to bacteria that are able to recognize and use 
siderophores. This is in agreement with observations of 
Freestone et al., [26], who used Escherichia coli strains and 
observed that a functional siderophore system is a key 
mechanism by which bacteria assimilate iron made available 
by the interaction of catecholamines with the host iron-bind-
ing protein. O’Donnell et al., [14] suggested that norepine-
phrine could act as an exogenous siderophore to liberate iron 
from iron-binding proteins. Freestone et al., [27] observed 
that norepinephrine stimulated bacterial growth in a nutrient-
poor medium when transferrin or lactoferrin were present. 
Norepinephrine was able to break the bonds between iron 
and transferrin as well as between iron and lactoferrin, 
providing the bacteria an available source of iron.  
 Catecholamines also might serve as a type of environ-
mental cue that microorganisms use to sense their surround-
ings and initiate cellular processes, including growth [11]. 
Lyte et al., [28] observed that catecholamine-induced bac-

terial growth is the result of noradrenaline-induced produc-
tion of an autoinducer of growth, which eliminates the need 
for any additional catecholamine exposure to further increase 
proliferation. Researchers have observed that catecholamines 
produce a novel autoinducer of growth referred to as Nore-
pinephrine-induced autoinducer (NE-AI) [13, 28]. Freestone 
et al., [13] observed similar increase in bacteria growth in 
the presence of NE-AI and norepinephrine. Sperandio et al., 
[29] observed another autoinducer-like activity (AI-3) 
involved in the increases of growth enteric bacteria in the 
presence of catecholamines. These results suggest bacteria 
perceive catecholamines as a host environmental cue, 
suggesting that catecholamines are involved in quorum-
sensing which is a mechanism for bacteria to communicate 
[30]. Freestone et al., [26] evaluated specific catecholamine 
receptor agonists to determine if the increase in bacterial 
growth was a result of the catecholamine binding a bacterial 
receptor. Only α-adrenergic antagonists were capable of 
blocking norepinephrine- and epinephrine-induced growth, 
and dopamine-induced growth was blocked by dopaminergic 
antagonists. Freestone et al., [26] hypothesized that the 
adrenergic antagonist could be inhibiting catecholamine 
uptake by the bacteria.  

5. BETA-ADRENERGIC AGONISTS AND BACTERIA 

 Beta-adrenergic agonist compounds share similar phar-
macological and structural properties with the endogenous 
catecholamines norepinephrine and epinephrine [3]. Because 
many important physiological and metabolic responses are 
regulated by catecholamines, most mammalian tissues and 
organs contain receptors for these compounds. The binding 
of natural or synthetic catecholamines to β-adrenergic recep-
tors promotes similar effects in the animal, including 
increased lipolysis in adipose tissue and increased glycol-
genolysis and gluconeogenesis in the liver [1].  
 Naturally occurring catecholamines, such as epinephrine 
and norepinephrine, affect gut motility and secretory 
responses in mammals [31-33]. This can directly affect the 
amount of time feed remains in the rumen, which influences 
feed digestion by ruminal microorganisms. Change in the 
passage rate of the digesta from the rumen can alter the 
population of microorganisms in the rumen. As passage rate 
increases, microorganisms that grow at slower rates will be 
subject to washout from the rumen. Researchers have 
observed that β-adrenergic agonists reduce the frequency and 
intensity of ruminal contractions [31, 32, 34]. Ruminal 
contractions are a vital part of digestion in the rumen; they 
mix ruminal digesta and aid in digestion of the diet by 
ruminal microorganisms. Ruminal contractions also are the 
mechanism for eructation of ruminal gases; inhibition of 
eructation leads to digestive bloat, resulting in mortality. 
Montgomery et al., [35] observed increased mortality in 
steers fed zilpaterol hydrochloride compared with steers fed 
no zilpaterol hydrochloride (P < 0.01); six mortalities among 
the steers fed zilpaterol hydrochloride were due to digestive 
bloat compared with one among steers not fed zilpaterol 
hydrochloride. Research also suggests that β-adrenergic 
agonists increase absorption in the digestive tract [33, 36, 
37]. Aschenbach et al., [37] found that β2 adrenergic agonists 
increased glucose uptake via sodium-glucose-linked 
transporter. Glucose typically is found at low levels in the 
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rumen; however, levels increase after cattle consume large 
amounts of rapidly fermented carbohydrates, predisposing 
cattle to acidosis. Increasing the removal of glucose from the 
rumen can reduce acidosis. Aschenbach et al., [37] did not 
observe the same increase with the dobutamine, a β1 
adrenergic agonist.  
 To this author’s knowledge, the only research that has 
examined the impact of synthetic catecholamines on gut 
microflora of livestock was conducted by Edrington et al., 
[38, 39], Poletto et al., [40], and Walker and Drouillard [41]. 
Edrington et al., [38, 39] examined the effects of 
ractopamine hydrochloride on Escherichia coli O157:H7 and 
Salmonella in experimentally inoculated sheep and swine 
[38] and feedlot cattle [39]. Edrington et al., [38] observed 
that sheep administered ractopamine hydrochloride before 
and after oral inoculation of Escherichia coli O157:H7 
increased shedding of the pathogen (P < 0.01) and tended to 
have increased cecal populations (P = 0.08) of the pathogen. 
Edrington et al., [38] found a different result when 
examining the effect of ractopamine hydrochloride in pigs 
experimentally inoculated with Salmonella. Pigs fed 
ractopamine hydrochloride had decreased fecal shedding (P 
< 0.05) and fewer liver samples that tested positive for the 
challenge strain of Salmonella (P = 0.05) than pigs not fed 
ractopamine hydrochloride. Edrington et al., [39] found that 
cattle administered ractopamine shed less Escherichia coli 
O157:H7 (P = 0.05) but tended to shed more Salmonella (P 
= 0.08) than cattle not administered ractopamine hydro-
chloride. Poletto et al., [38] found that pigs fed ractopamine 
hydrochloride for 4 weeks shed less Enterobacteriaceae at 
slaughter than control pigs (P < 0.05). Although researchers 
have demonstrated that natural catecholamines increase 
growth of Escherichia coli O157 [28, 42, 15], more research 
needs to be conducted to determine the potential impact of β-
adrenergic agonists on pathogenic bacteria. Walker and 
Drouillard [41] observed a quadratic effect on in vitro gas 
production with the addition of ractopamine hydrochloride to 
buffered ruminal fluid (P < 0.05; 177, 181, 185, 190, and 
170 mL water displaced by gas for 0, 0.226, 2.26, 22.6, and 
226.0 mg ractopamine hydrochloride/L, respectively). 
However total volatile fatty acids (VFA) production was not 
changed (P > 0.50). Walker and Drouillard [41] also 
evaluated the impact of ractopamine hydrochloride on in 
vitro dry matter disappearance with isonitrogenous combina-
tions of corn and soybean meal; corn and urea; or corn, 
soybean meal, and urea as substrates. There was an increase 
in in vitro dry matter digestibility with the addition of 
ractopamine hydrochloride (P < 0.001), and changes in dry 
matter disappearance (P < 0.01) were more pronounced 
when ractopamine was used in conjunction with more degra-
dable forms of nitrogen (i.e., urea). These results suggest 
ractopamine hydrochloride affects ruminal microorganisms, 
potentially altering nitrogen requirements of proteolytic 
activity and degradation of dietary nitrogen sources. Walker 
and Drouillard [41] evaluated the direct impact of racto-
pamine hydrochloride on proteolysis in vitro and observed 
lower concentrations of ammonia and amino acids when 
ractopamine hydrochloride was added to fermentation tubes 
(P < 0.001). Walker and Drouillard (unpublished data) found 
a similar decrease in concentrations of ammonia and amino 
acids when salbutamol was added to fermentation tubes (P < 
0.01). Ractopamine hydrochloride lowered ruminal ammonia 

and amino acid concentrations in vivo, but the response was 
dependent on the diet [41]. This could explain results of 
Walker [43] and Beermann [44], in which β-adrenergic 
agonists elicited a greater response in ruminants fed protein 
sources that were more readily degraded by ruminal 
microbes. 

6. RUMINAL BACTERIA 

 The ecosystem of the rumen is diverse, and bacteria play 
the dominant role in ruminal fermentation. Ruminal bacteria 
numbers have been reported to be 1010 cells per gram of 
contents [45]. Ruminal bacteria can be divided into 
categories based on the digestive function performed in the 
rumen: amylolytic, proteolytic, fibrolytic, lipolytic, etc. 
Bacterial species in the rumen that are responsible for normal 
fermentation of starch, lactate, and protein as well as 
biohydrogenation of fatty acids are mostly Gram negative. 
 Ruminal bacterial species are interdependent. Microorga-
nisms of one species rely on other species to produce 
substrates essential for their survival. This is known as cross-
feeding and is an important feature of the ruminal ecosystem. 
Several end products produced by ruminal microorganisms 
are not measurable in the rumen because they are rapidly 
assimilated and used as substrates by other species of 
ruminal microbes. These products are referred to as 
intermediates. For example, most of the propionate produced 
in the rumen is metabolized from succinate, which is decar-
boxylated to propionate by organisms such as Selenomonas 
ruminantium [46, 47]. Methanogens use hydrogen and 
carbon dioxide produced by other microorganisms to 
generate methane as an end product. This benefits the 
methanogens and enables the rumen to remain anaerobic, 
thus ensuring survival of ruminal microorganisms. The 
ability of microorganisms to interact in the rumen leads to 
improved digestion of complex feeds [48]. An example of 
interdependence is digestion of plant cell wall material 
containing pectin, hemicellulose, cellulose, protein, and 
lignin in which the physical arrangement can hinder 
microbial access to the cellular components. The ability of 
one microbial species to degrade a physical barrier that 
otherwise impeded another microbe enables more complete 
digestion [49]. Another example of interdependence occurs 
between saccharolytic microbes and cellulolytic and amylo-
lytic species; enzymes secreted by the cellulolytic and 
amylolytic species are nutrients for the saccharolytic species, 
which, in turn, form essential nutrients for the former species 
[48].  
 Ruminal bacteria are the main starch-fermenting micro-
organisms in the rumen [49]. Amylolytic and dextrinolytic 
microbial species vary the greatest in number because of the 
variation in starch content and solubility of diets [48], and 
breakdown of starch begins with bacterial attachment to the 
feed particle. The major starch-fermenting bacteria in the 
rumen are Gram negative and include Ruminobacter 
amylophilus and Selenomonas ruminantium. Kotarski et al., 
[50] identified 15 strains of amylolytic bacteria and charac-
terized eight amylolytic enzymes. Not all bacteria were 
equipped with the complete range of enzymes; thus, 
maximal breakdown of starch to monosaccharides requires 
coordination among bacteria species. Cotta [51] found the 



Effects of Catecholamines on Gut Microflora The Open Agriculture Journal, 2012, Volume 6     61 

coculture of Streptoccocus bovis, Butyrivibrio fibrisolvens, 
Bacteriodes ruminicola, and Selenomonas ruminatium 
resulted in the greatest bacterial growth rates and complete 
breakdown of starch.  
 Protein degradation in the rumen is initiated by attach-
ment of microorganisms to feed particles, after which, cell-
bound microbial proteases are activated [52]. An estimated 
70 to 80% of ruminal microorganisms are attached to feed 
particles [53], and 30 to 50% of the attached microorganisms 
have proteolytic activity [54]. In the ruminal system, there is 
no specific microorganism that occupies the protein fermen-
tation niche as many ruminal microorganisms possess pro-
teolytic activity and ferment amino acids or peptides [48]. 
Russell et al., [55] found Streptococcus bovis to be very 
proteolytic. Fulghum and Moore [56] identified Butyrivibrio 
sp., Succinivibrio sp., Selenomonas ruminantium, Borrelia 
sp., and Bacteroides sp. as major proteolytic bacteria. 
Atwood et al., [57] tested pasture-grazed dairy cows, deer, 
and sheep for hyper-ammonia producing bacteria and 
identified Clostridium aminophilum, Clostridium sticklandii, 
Peptostreptococcus anaerobius, and Fusobacterium necro-
phorum as major hyper-ammonia producing bacteria present 
in the rumen. Scheifinger et al., [58] found that ruminal 
degradation of dietary amino acids is a result of extensive 
bacterial interaction. They evaluated amino acid degradation 
activity in Megasphaera, Streptococcus, Selenomonas, 
Butyrivibrio, and Eubacterium and found that each of the 
bacterial species was capable of degrading amino acids. 
However, total degradation of amino acids is a result of the 
combined deaminating activity of bacteria. Wallace [59] 
found that growth of Butyrivibrio alactacidigens, 
Butyrivibrio fibrisolvens, Selenomonas ruminantium, and 
Streptococcus bovis in medium containing casein as the sole 
nitrogen source was greater when the organisms were 
cultured together than when each was inoculated singly, in 
which case growth was poor or nonexistent. In addition to 
ruminal bacterial species, protozoa are proteolytic and 
contribute to the breakdown of protein in the rumen. Veira 
[60] stated there was an increase in protein degradation in 
faunated ruminants compared with defaunated ruminants. A 
higher concentration of ruminal ammonia has been observed 
in faunated animals compared with ciliate-free animals [61-
63]. Hino and Russell [64] evaluated the relative contribu-
tions of ruminal bacteria and protozoa in degradation of 
protein in an in vitro experiment. They observed that more 
soluble proteins were primarily degraded by bacteria, 
whereas protozoa contributed to the degradation of insoluble 
particulate proteins. In the in vitro experiment, protozoa 
were limited in their ability to assimilate peptides or amino 
acids. Bacteria also were better able to degrade low-
molecular-weight particles compared with protozoa. The 
researchers observed that the combination of bacteria and 
protozoa had a synergistic effect on increasing ammonia and 
decreased (P < 0.05) non-ammonia, non-protein nitrogen. 
Forsberg et al., [65] observed that protozoal proteolytic acti-
vity was primarily due to cysteine proteinases and aspartic 
proteinases and that aminopeptidase activity was higher than 
deaminase activity. Protozoa predate ruminal bacteria, 
engulfing them and releasing free amino acids and ammonia 
into the rumen [66].  
 Factors that effect proteolysis in the rumen include 
solubility of dietary protein, structure of the protein, level of 

intake by the animal, and particle size of the feedstuff. 
Sniffen et al., [67] fractioned protein contained in ruminant 
feedstuffs into three categories according to solubility in the 
rumen: Category A consisted of non-protein nitrogen and 
was rapidly converted to ammonia. Category B was true 
protein and was broken into B1, B2, and B3; B1 was rapidly 
degraded in the rumen, B2 was intermediately degraded in 
the rumen, and B3 was slowly degraded with a high 
percentage of B3 protein escaping the rumen. Category C 
was bound true protein typically associated with lignin, 
tannin-protein complexes, and Maillard products and was not 
degraded in the rumen. Attachment is critical to proteolysis 
in the rumen; plant proteins often are encased in or 
associated with carbohydrate, and the structure of these 
complexes can affect proteolysis by interfering with 
microbial attachment to protein [68]. Treatments that protect 
feed proteins from ruminal degradation, such as heat, alter 
the structure of the feed protein, preventing attachment [69]. 
As feed intake increases, passage rate increases, which leads 
to a shorter retention time for digesta in the rumen. As a 
result, more protein escapes the rumen without being 
degraded by ruminal microorganisms. Zinn et al., [69] eva-
luated ruminal degradation of different protein supplements 
at two different intake levels and observed higher degra-
dation percentages at the lower intake level.  
 Fibrolytic bacteria are primarily associated with feed 
particles in the rumen. The major species include 
Fibrobacter succinogenes (Gram negative), Ruminococcus 
albus, (Gram variable), Ruminococcus flavefaciens (Gram 
positive), and Prevotella ruminicola, (Gram negative) [70]. 
Fibrolytic bacteria are generally nonproteolytic and require 
ammonia as a source of nitrogen [71]. One or more bran-
ched-chain fatty acids also are required growth factors for 
fibrolytic bacteria. Fibrolytic bacteria produce several 
enzymes not produced by the animal that are required to 
break down cellulose and hemicelluloses in fibrous feed. 
Among fiber-fermenting bacteria, primary cellulolytic bac-
teria such as Ruminococcus albus and Ruminococcus 
flavefaciens are among the most restrictive ruminal microbes 
in terms of the niche they occupy [48]. They are restricted to 
fermenting disaccharides, trisaccharides, and oligosaccha-
rides released during hydrolysis of holocellulose as sources 
of carbon and energy [48]. Cellulolytic bacteria often rely on 
other microbes to supply the nutrients they require for 
survival.  
 Ruminal bacterial are responsible for biohydrogenation 
of unsaturated lipids in the rumen. Unsaturated fatty acids 
are relatively toxic to some ruminal bacteria. Biohydrogena-
tion converts unsaturated fatty acids to saturated fatty acids, 
which are less toxic. During biohydrogenation, free hydro-
gen ions are removed from the rumen. Major species invol-
ved in biohydrogenation include Anaerovibrio lipolytica [72, 
73], Butyrivibrio fibrisolvens [72, 73], Ruminococcus albus 
[72], and Treponema bryantii [72]. 
 Bacterial species in the ruminal ecosystem are highly 
interconnected, and their survival depends on other ruminal 
microorganisms. Because ruminal microflora are interde-
pendent, changes that occur in the rumen that affect one 
species of microorganism will usually affect the entire 
ruminal microbial population. Competition for nutrients is 
vital for survival of ruminal microorganisms, and the ability 
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to accrue limited nutrients such as ammonia, amino acids, 
and peptides dictates longevity of a microbial species. In 
many instances, faster growing bacteria species, such as 
starch fermenters, may have an advantage in using limited 
resources compared with slower growing organisms, such as 
fiber-fermenting bacteria.  

7. MICROBIAL FERMENTATION IN THE RUMEN 

 Peyer discovered fermentation in the rumen in 1685 [72]. 
Since Peyer’s discovery, the rumen has been recognized as 
an important microenvironment in the digestive tract of 
ruminants. Hungate [72] stated that the concentration of 
microorganisms in the rumen is as great as in any other 
natural habitat. The rumen is host to an assortment of 
microorganisms, notably bacteria and protozoa, that enable 
ruminants to effectively digest forages. Bacteria are the most 
abundant microorganism in the rumen and exist in a diverse 
population, but roughly 20 bacterial species dominate the 
population. These species are influenced by feedstuffs and 
additives consumed by ruminants. Ruminal bacteria are vital 
because they produce VFA from feedstuffs that are 
otherwise indigestible by the animal’s digestive enzymes. 
The VFA are then absorbed as an energy source by the host 
animal. The microbial biomass produced from fermentation 
of feedstuffs is a source of protein for the host. Ruminal 
bacteria are sensitive to oxygen, pH, and nutrient availabi-
lity. Altering conditions in the rumen can alter the population 
of microorganisms that are present to digest feedstuffs. 
Understanding ruminal microorganisms and their mecha-
nisms for digesting feedstuffs has been the focus of ruminant 
nutrition research [72, 74] for decades. Techniques for 
improving ruminant animal performance have focused on 
changes that occur in the rumen, and specifically the ruminal 
microflora, as a result of changes in the animal’s diet. 
Manipulating microorganisms in the rumen is a means of 
improving fermentation to achieve more complete digestion 
of feedstuffs.  
 The rumen is a dynamic environment, and changes to the 
animal’s diet, such as altering digestibility of feedstuffs, the 
forage-to-concentrate ratio, feed intake, and processing of 
the feedstuff, all can affect the microbial population [75-77]. 
The quantity of bacteria adherent to ruminal digesta can be 
altered by the previously mentioned dietary alterations as 
well as the presence of feed additives in the diet [78, 79]. 
The impact of changing a component of the diet on ruminal 
fermentation has been of interest to many researchers. 
Hussein et al., [80] examined the influence of forage level on 
ruminal bacteria composition in ruminally cannulated beef 
steers fed corn-based diets with 30% or 70% corn silage (dry 
matter basis) ad libitum and found an increase in organic 
matter, nitrogen, and amino acids in the mixed ruminal 
bacteria harvested from steers fed the diet with less forage. 
Sindt et al., [81] examined the impact of grain processing on 
ruminal fermentation and found that decreasing flake density 
from 360 or 310 g/L increased microbial efficiency (P < 
0.05) and tended to increase microbial nitrogen flow to the 
duodenum (P < 0.10). Zinn et al., [82] studied the impact of 
grain processing and dry matter intake on ruminal 
fermentation and found that steam-flaking corn increased (P 
< 0.05) ruminal digestion of organic matter and starch. 
Ruminal pH levels were lower and molar proportions of 

acetate were higher in steers with greater dry matter intake 
and for steers fed steam-flaked corn diets compared with 
steers fed dry-rolled corn (P < 0.05). Cooper et al., [83] 
examined the impact of grain processing on ruminal 
fermentation in six ruminally and duodenally cannulated 
steers fed high-moisture corn, steam-flaked corn, or dry-
rolled corn and found that dry matter and organic matter 
intakes were approximately 15% higher for steers fed high-
moisture corn than for steers fed dry-rolled corn or steam-
flaked corn (P < 0.05). True ruminal organic matter 
digestibilities for steers fed high-moisture corn were 18% 
and 10% greater than those for steers fed dry-rolled corn and 
steam-flaked corn, respectively (P < 0.05), and ruminal 
starch digestibilities for steers fed high-moisture corn and 
steam-flaked corn were approximately 19% greater than 
those for steers fed dry-rolled corn (P < 0.05). Bacterial 
crude protein flow from the rumen in steers fed high-
moisture corn was 29% greater (P < 0.05) than that in steers 
fed steam-flaked corn or dry-rolled corn. Cooper et al., [83] 
suggested that cattle fed high-moisture corn require more 
degradable intake protein than cattle fed dry-rolled corn or 
steam-flaked-corn. Calderon-Cortes and Zinn [84] examined 
the impact of forage particle size on ruminal digestion by 
feeding ruminally and duodenally cannulated steers 
sudangrass hay at 8% or 16% of diet dry matter. Increasing 
the level of forage tended to increase ruminal pH and 
decrease molar proportions of butyrate (P < 0.10). Theurer  
et al., [85] examined the impact of grain processing on 
ruminal digestion in steers fed dry-rolled sorghum or steam-
flaked sorghum and found that starch digestion (as a 
percentage of intake) in the rumen was higher for steers fed 
steam-flaked sorghum than for steers fed dry-rolled sorghum 
(82% vs. 67%; P < 0.05). Theurer et al., [85] also tested the 
impact of degree of grain processing by feeding steers 
steam-flaked sorghum and steam-flaked corn flaked to bulk 
densities of 437 and 283 g/L, respectively. Decreasing flake 
density of steam-flaked sorghum and steam-flaked corn 
linearly increased starch digestion (as a percentage of intake) 
in the rumen (P < 0.05).  
 Any compound fed to ruminants can affect the ruminal 
microbial population and ruminal fermentation, and many 
feed components have been evaluated for their ability to do 
so. Ionophores directly affect Gram-positive bacteria [86], 
causing a shift in the proportions of VFA with little effect on 
total acid production [87,88]. Ionophores decrease methane 
production, proteolysis, and deamination in the rumen [89]. 
Antibiotics can alter ruminal microbial population [90] and 
fermentation [91]. O’Connor et al., [92] observed that 
chlortetracycline, oxytetracycline, and dimetridazole reduced 
protozoal activity, which possibly alters the ruminal 
microflora population by reducing predation of bacteria by 
protozoa. O’Connor et al., [92] also examined changes to 
VFA in the presence of antibiotics and steroids. In general, 
antibiotics decreased total VFA production and increased the 
acetate-to-propionate ratio. Penicillin and spiramycin had the 
largest impact. melengestrol acetate increased acetate con-
centration and total VFA, whereas diethylstilbestrol, desoxy-
corticosterone, hydrocortisone testosterone, methandro-
stenolone, and prednisolone had little impact. Dietary fat, 
predominantly unsaturated fatty acids, has been noted to be 
toxic to ruminal microbes; it decreases ruminal fermentation, 
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particularly fiber digestion, when included at high levels. 
[93-96]. 

8. PROTEIN 

 Suggested protein requirements for finishing cattle range 
from 12.5% to 13% of diet dry matter [97]. In a recent 
survey, most consulting feedlot nutritionists recommended a 
protein level of 13.5% of diet dry matter in finishing rations 
[98]. Nitrogen sources most commonly supplemented in 
feedlot rations include grain coproducts, soybean meal, 
cottonseed meal, and urea [98]. Urea is included in finishing 
cattle diets at up to 2% of dry matter, but it typically is 
included at 1.2% of dry matter [98]. Use of non-protein 
nitrogen by cattle involves the conversion to microbial 
protein by flora and fauna that colonize the rumen [99]. 
Studies on the nutritional requirements of ruminal bacteria, 
both in pure culture [100] and in vivo [101,102] have 
revealed that ammonia is a major nitrogen source for bac-
terial growth. Most nitrogen used by ruminal microorga-
nisms is in the form of ammonia, and large amounts of nitro-
gen in feed are converted to ammonia by the microorganisms 
[99]. Hume et al., [103] found that microbial cell yields in 
the rumen are proportionate to dietary nitrogen. Nitrogen 
promotes microbial growth to the extent dictated by 
availability of fermentable carbohydrates [99]. Haskins  
et al., [104] and Bolsen et al., [105] found no difference in 
animal perform-ance between concentrate diets with soybean 
meal or urea as the nitrogen source. However, Braman et al., 
[106] found that steers supplemented with soybean meal had 
improved feed efficiency (P < 0.05) compared with steers 
fed urea as the only supplemental nitrogen source. There was 
a linear increase in gain and efficiency (P < 0.05) with 
increasing levels of true protein ranging from 10.8% to 
18.4% crude protein, but there were no significant changes 
with equivalent nitrogen levels when nitrogen was provided 
as urea [106].  
 Dietary proteins ingested by ruminants are subjected to 
various rates and extents of digestion by ruminal microorga-
nisms. The primary nitrogen-containing compounds in the 
ruminant diet are proteins, nucleic acids, and urea. Ruminal 
microorganism break down dietary protein to peptides, 
amino acids, or ammonia depending on the enzymes pro-
duced by the microbes present and the form of nitrogen they 
require. Protein available to the animal is a combination of 
dietary protein that has escaped the rumen and microbial 
crude protein from microbes that enter the small intestine. In 
finishing cattle, microbial crude protein output normally 
exceeds the animal’s protein requirement [99]. 
 Ruminal fermentation is a crucial factor to consider when 
determining the amount of metabolizable protein available to 
the animal [100]. There is a direct relationship between 
carbohydrate level in the diet and nitrogen required by 
ruminal microorganisms. As the amount of energy available 
to the microbes increases, so does their need for nitrogen. 
Therefore, the amount of microbial crude protein available to 
the animal is dependent on energy available in the rumen. 
Diets fed to finishing cattle typically are high in concentrate, 
which increases the microorganisms’ requirement for 
nitrogen [99]. Peterson et al., [107] observed greater gains 
when dietary crude protein increased from 9% to 15% in 

high-concentrate diets. If the microbial requirement for 
nitrogen is increased by addition of starch and sugar in the 
diet, adding nitrogen in the form of non-protein nitrogen 
supports increased microbial synthesis and increases energy 
fermented in the rumen [99]. A response to additional non-
protein nitrogen is indicative of a need for ammonia by 
microbes. Non-protein nitrogen is best utilized as a nitrogen 
source by ruminal microorganisms when diets are high in 
soluble carbohydrates, which is typical of diets fed to 
finishing cattle [99]. An estimated 80% of ruminal isolates 
can grow with ammonia as their sole nitrogen source [100]. 
Non-protein nitrogen is converted rapidly to ammonia by 
ruminal bacteria. If energy in the diet is not readily digested, 
ammonia will be absorbed through the rumen wall into the 
blood, where it will be converted to urea by the liver and 
excreted in the urine [99]. High-concentrate diets supply 
readily available energy, allowing ruminal microorganisms 
to efficiently use non-protein nitrogen. Peptides supply 
nitrogen for ruminal microorganisms with a more rapid 
fermentation rate and spare the cost of synthesizing amino 
acids. Amino acid uptake by bacteria is more efficient when 
amino acids are in the form of peptides [99]. Most amino 
acids are extensively degraded in the rumen to ammonia, 
carbon dioxide, VFA, and branched-chain fatty acids [48]. 
Amino acids can be degraded through decarboxylation to 
yield an amine and carbon dioxide, but this pathway is minor 
in the rumen and normally is associated with low ruminal pH 
and acidosis. More commonly, amino acids are degraded 
through nonoxidative deamination.  
 When energy or amino acids are limited, synthesis and 
breakdown of proteins are regulated to maintain cellular and 
tissue mass that contributes to critical metabolic needs of the 
animal [108]. Metabolic energy and amino acids are required 
for the continuous process of protein turnover in the body; 
these are provided in the diet and represent the primary input 
cost for meat animal production [109].  

9. BETA-ADRENERGIC AGONISTS AND DIETARY 
PROTEIN 

 Walker and Drouillard’s [41] in vitro results suggest that 
proteolysis may be directly affected by β-adrenergic 
agonists. Walker et al., [43] demonstrated that the response 
to ractopamine hydrochloride supplementation in finishing 
heifers could be attenuated by feeding ruminally degraded 
forms of nitrogen. They found an interaction between racto-
pamine hydrochloride and nitrogen source, noting that the 
ratio of degradable intake protein and undegradable intake 
protein provided to the ruminal microorganisms is important 
for maximizing response to ractopamine hydrochloride in 
feedlot heifers. Treatment diets were formulated to be 
isonitrogenous and had 13.7% crude protein. Expeller 
soybean meal, soybean meal, and urea were used to achieve 
three levels of degradable intake protein in the diet (69.3%, 
62.7%, and 57.3%). Observations from this experiment 
indicated that diets containing more ruminally degradable 
forms of protein yielded a greater response to ractopamine 
hydrochloride. This is in agreement with observations of 
Beermann et al., [44], who fed lambs diets with soybean 
meal plus fish meal or soybean meal alone. Lambs were 
supplemented with 0 or 10 ppm cimaterol for 5 or 10 weeks. 
Performance improved in lambs fed fish meal or cimaterol; 
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however, there were no additive effects. Cimaterol was less 
effective at increasing the size of three foreleg muscles when 
fed in diets containing fish meal than when fed in diets 
containing only soybean meal. This difference was less 
pronounced in hindleg muscles.  

CONCLUSION 

 Beta-adrenergic agonists improve gain and efficiency in 
ruminants during the final days prior to harvest. The 
response is primarily a result of repartitioning nutrients from 
adipose accretion to lean tissue accretion. However, effects 
of synthetic catecholamines on ruminal microflora have not 
been thoroughly researched. The effect of catecholamines on 
bacteria has been a focus of resent research in human health, 
and scientists have observed direct effects of catecholamines 
on bacteria. Natural catecholamines have been shown to 
increase bacterial growth, virulence factors, biofilm forma-
tion, and adhesion. There is potential for β-adrenergic 
agonist to directly affect ruminal microflora, thus altering 
digestive function within the ruminal ecosystem. Microbial 
species in the rumen are integrally connected, and cross-
feeding in the rumen is important to microbes. Therefore, the 
effect of natural or synthetic catecholamines on a microorga-
nism or group of microorganisms in the rumen could affect 
the entire population of ruminal microbes. The potential of 
β-adrenergic agonists to alter proteolysis could directly 
influence the type of protein that is considered ideal for diets 
fed with ractopamine hydrochloride. Understanding the 
interaction between catecholamines and microbes in the 
rumen will enable nutritionists to formulate diets capable of 
maximizing the response to the compound. 
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