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Abstract: The adequate representation of crop response functions is crucial for agronomic as well as agricultural eco-

nomic modeling and analysis. So far, the evaluation of such functions focused on the comparison of different functional 

forms. In this article, the perspective is expanded also by considering different regression methods. This is motivated by 

the fact that exceptional crop yield observations (outliers) can cause misleading results if least squares regression is ap-

plied. In order to address this problem we also apply robust regression techniques that are not affected by such outliers. 

We evaluate the quadratic, the square root and the Mitscherlich-Baule function using the example of Swiss corn (Zea 

mays L.) yields. It shows that the use of robust regression narrows the range of optimal input levels across different func-

tional forms and reduces potential costs of misspecification compared to least squares estimation. Thus, differences be-

tween functional forms are reduced by applying robust regression. 
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INTRODUCTION 

 The adequate representation of production or crop yield 
functions is crucial for modeling purposes in agronomic, 
agricultural and environmental economic analyses. The dis-
cussion and estimation of different functional forms has 
therefore gained much attention in agronomic and agricul-
tural economics literature. Various functional forms have 
been considered so far, but less attention has been given to 
the estimation techniques in general and the impact of excep-
tional crop yield observations (outliers). The latter is impor-
tant since the Least Squares (LS) fitting criterion can pro-
duce misleading results if data sets contain outliers, such as 
exceptional yields caused by extreme weather events or cli-
mate situations. In order to address this problem we apply 
robust regression techniques that are not affected by such 
outliers. The aim of this article is to analyze the influence of 
estimation techniques on the evaluation of different func-
tional forms that describe crop responses. This extends the 
literature on the comparison of different functional forms 
[e.g. 1-5] by taking the effect of outliers for the estimation 
and evaluation of crop production functions into account. 

 So far, comparison of functional forms has been based on 
the coefficient of determination [2], residual distribution [3], 
non-nested hypothesis testing [4] and potential misspecifica-
tion costs [5], respectively. Using LS and robust regression, 
we devote special attention to the cost of misspecification 
which constitutes an economic approach to the comparison 
of production functions. This allows us to assess the poten-
tial underestimation of net revenues that would arise from 
using calculations based on LS instead of robust regression 
methods or from an improper specification of the functional 
form. 
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 We apply a meta-modeling approach that makes use of 
crop yield data generated with a biophysical simulation 
model to estimate and compare crop production functions. 
Biophysical simulation allows us to generate an enlarged 
data base compared with field observations. It particularly 
enables the creation of comprehensive data sets of crop 
yields with respect to the variation of analyzed factors such 
as agricultural inputs, while keeping other factors constant. 
The resulting data set is used to estimate different types of 
crop production functions. Those are subsequently integrated 
in a non-linear economic optimization model to assess opti-
mal factor inputs, such as nitrogen fertilizer and irrigation 
water. Numerical examples are given for Swiss corn (Zea 
mays L.) yields. 

MATERIAL AND METHODOLOGY 

Production Functions 

 Three types of crop production functions are analyzed in 
this study: two polynomial specifications (the quadratic and 
the square root function) and the Mitscherlich-Baule func-
tion. These functional forms are frequently used in the litera-
ture and proved to accurately capture the underlying rela-
tionships [1, 4-12]. 

 Being aware that corn yields are driven by numerous 
factors, we focus our analysis on two crucial production fac-
tors: nitrogen fertilizer and irrigation water. Following 
Llewelyn and Featherstone [5], production functions are 
used to describe corn yield responses to nitrogen and irriga-
tion water in a simple analytical description, which is neces-
sary to represent yield response processes in agricultural and 
environmental economic allocation models. These functions 
implicitly consider other production factors such as soil and 
climate [13]. In contrast, complex production functions — 
e.g. including sets of climate variables and their interactions 
with management variables — can complicate or preclude 
straightforward application in further economic analysis. 
Therefore, we focus in this study on simple analytical forms 
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of production functions that are widely used in practice [e.g. 
8, 11-17]. 

 The quadratic form, shown in equation (1), consists of an 
additive composition of the input factors, their squared val-
ues, and an additional interaction term. The latter elucidates 
whether the input factors are independent of each other or 
not. The quadratic function is formally defined as follows: 
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 Y denotes corn yield per area, N the amount of inorganic 

nitrogen applied, and W irrigation water applied. The i’s are 

parameters that must satisfy the subsequent conditions in 

order to ensure decreasing marginal productivity of each 

input factor: 
 1

,
2
> 0  and 

 3
,

4
< 0 . Furthermore, if 

 5
> 0  the two input factors are complementary. They are 

competitive if 
 5

< 0 , while 
 5

= 0  indicates independence 

of the two input factors. 

 The square root function (equation 2) is very similar to 
the quadratic form but produces different shapes of the 
curves. The square root form is defined as follows: 
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 To ensure decreasing marginal productivity of each input 
factor, the parameters must satisfy the same conditions as for 
the quadratic form, and their interpretation is identical. 

 The Mitscherlich-Baule function (equation 3) allows for a 
growth plateau, which follows from the von Liebig approach 
to production functions. Moreover, this functional form is 
characterized by continuously positive marginal productiv-
ities of the input factors. It does not exhibit negative mar-
ginal productivities, as the above polynomial forms. For-
mally, the Mitscherlich-Baule function is given by 
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with 
 1

 representing the growth plateau, and 
 3

 and 
 5

 the 

natural input endowments, that include nitrogen in the soil 

(
 3

) and water endowments (
 5

) such as soil moisture. The 

coefficients 
 2

 and 
 4

 describe the influence of the corre-

sponding input factors on the yield. Unlike the classical von 

Liebig production function, the Mitscherlich-Baule function 

allows for factor substitution. It is not linear limitational in 

the input factors as the von Liebig function, i.e. the isoquants 

are not right-angled. 

Data 

 Our analysis and estimation of production functions is 
based on simulated corn yield data that is generated with the 
CropSyst model. This is a deterministic crop yield simula-
tion model that has been widely used and validated (see 
Stöckle et al. [18], for a review of studies using CropSyst). It 
involves various above and below ground processes, such as 
soil water budget, soil-plant nitrogen budget, crop phenol-
ogy, canopy and root growth, biomass production, crop 
yield, residue production and decomposition, and soil ero-
sion by water. These processes are simulated with daily time 

step. The model is calibrated to field trials and sample data. 
Model settings and calibration for the Swiss Plateau region 
are presented in Torriani et al. [19]. 

 In our analysis, CropSyst is driven by daily weather data 
from six different locations on the Swiss Plateau for the 
years 1981 - 2003, as provided by the Swiss Federal Office 
of Meteorology and Climatology (MeteoSwiss). These loca-
tions are distributed over the eastern Swiss Plateau ranging 
from 06°57’ to 08°54’ longitude and are located at elevation 
levels between 422 and 565 meter above sea level [20]. 
Compared to an approach with one single location, the use of 
observations from six different weather stations broadens the 
database and allows us to represent production functions for 
a large proportion of the entire Swiss corn producing acre-
age. Growing season average temperatures and precipitation 
sums (average over the six locations) for the period 1981-
2003 are shown in Fig. (1). 

 To enable meta-modeling analysis and avoid distortions 
due to dynamic effects, all simulations are conducted using 
identical starting conditions. Accordingly, the simulation and 
subsequent data analysis are restricted to one uniform type of 
soil for all locations, characterized by texture with 38% clay, 
36% silt, 26% sand and soil organic matter content at 2.6% 
weight in the top soil layer (5 cm) and 2.0% in lower soil 
layers [19]. Moreover, the type of management is uniform 
for all simulations. Identical seeding dates, irrigation settings 
(possible from day one after sowing to harvesting, never 
exceeding field capacity), fertilizer type (inorganic nitrogen 
fertilizer) and fertilizer application dates are used in Crop-
Syst [20]. This approach avoids distortions due to non-
uniform soil and management properties. 

 To have a comprehensive data set, one simulation is con-
ducted without application of fertilizer and irrigation for 
each location and each year. Additional combinations of 
irrigation and fertilizer are generated randomly. Taking ni-
trogen fertilizer application rates from 0 to 320 kg/ha and 
irrigation water from 0 to 340 mm, this results in 212 differ-
ent levels of nitrogen application to the plants and 60 differ-
ent levels of irrigation. 

 The resulting dataset consists of 527 observations. As-

suming a dry matter content of 85%, average yields for three 

different ranges of irrigation W and fertilizer N application, 

respectively, are shown in Table 1. This rough approxima-

tion of the average corn yields reveals a global yield maxi-

mum for   71 W 140  and   76 N 150 . Simulated corn 

yields decrease if the amounts of irrigated water or applied 

fertilizer deviate from those input ranges. 

 In our meta-modeling approach, output of the biophysical 
model is restructured into crop production functions. As a 
consequence, key relationships among the factors studied 
that are relevant for aggregate economic analysis can be iso-
lated on a yearly basis [10]. In contrast, processes in the bio-
physical model are conducted on a daily time step. Thus, the 
relationships estimated in the crop production functions do 
not replicate settings in the biophysical model, i.e. in the data 
generating process. Similar meta-modeling approaches that 
combine biophysical simulations and economic modeling by 
using production functions are used, for instance, by Jalota et 
al. [10], and Llewelyn and Featherstone [5]. 
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Table 1. Average Simulated Corn Yields (kg/ha) 1981-2003 

 

Applied Nitrogen in kg/ha 
 

0-75 76-150 151-320 

0-70 6955 8872 8521 

71-140 7293 9717 9100 

 

 

Applied  

irrigation  

water in mm 

141-340 7275 8814 9158 

Source: CropSyst simulations. 

 

 Due to settings in the crop yield simulation, the dataset 
contains quasi-continuous input-output combinations. In 
contrast to discrete application of inputs, the use of quasi-
continuous input levels enables a regression approach rather 
than an analysis of variance. Moreover, the random applica-
tion of inputs allows for unbiased estimation of the produc-
tion function coefficients since input levels are uncorrelated 
with other variables, such as environmental factors, that also 
influence corn yields but are not considered in the produc-
tion function estimations. 

Outliers and Estimation Methodology 

 Exceptional climatic years are supposed to cause excep-
tional crop yield levels and to have an extraordinary influ-
ence on plant response to irrigation and fertilization. For 
instance, heat waves, droughts or waterlogged soils can indi-
rectly restrict yield levels. Furthermore, the plants are ex-
pected to respond specifically to input management under 
extreme climatic conditions. As a consequence, they may 

involve outliers that deviate from the relationship described 
by the majority of the data and thus lead to a misspecifica-
tion of the estimated production function. 

 The least squares estimator can not cope with a single 
outlier because one outlier can be sufficient to move the co-
efficient estimates arbitrarily far away from the actual under-
lying values. As a consequence, outliers cause unreliable 
coefficient estimates if LS is applied [21-24]. 

 Two standard examples for outliers in a linear simple 
regression model are presented in Fig. (2). Point A clearly 
deviates from the typical linear relationship between the de-
pendent (y) and the independent (x) variable. Such ‘vertical’ 
outlier is characterized by an unusual observation in the de-
pendent variable. The impact of vertical outliers on the LS 
estimation of regression coefficients is usually small and 
mainly affects the regression intercept [25]. If unusual ob-
servations occur in the set of independent variables, these 
outliers are called leverage points. If such leverage point 
deviates from the linear relationship described by the major-
ity of observations it is called ‘bad leverage point’ such as 
Point B in Fig. (2). Due to the exposed position of the outlier 
it has a leverage effect on the LS coefficient estimation. In 
contrast, a leverage point is called ‘good leverage point’ if it 
does not deviate from the typical relationship. Good leverage 
points are no outliers and even improve the regression infer-
ence as these points reduce standard errors of coefficient 
estimates. 

 Reliable regression results are provided if and only if 
outliers are removed or appropriately down-weighted. But, 
various classical methods for outlier detection, suffer from a 

Fig. (1). Growing season average temperatures and precipitation sums: 1981-2003. 
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lack of robustness [23, 24]. For instance, outliers can tilt the 
(original) regression line and have small regression residuals. 
As a consequence, outliers might not be discovered in resid-
ual plots [25]. Furthermore, studentized and jackknifed re-
siduals, Cooks distances and other diagnostics based on Hat 
matrix elements, for instance, are susceptible to the so called 
masking effect [23]. If more than one outlier occurs, these 
outlier diagnostics might not be able to detect a single outlier 
because one outlier can be masked by the presence of others. 
Moreover, high dimensionality of the estimation problem 
and a large number of observations as it is the case for our 
analysis can make graphical outlier identification procedures 
infeasible. 

 In contrast, robust regression enables reliable coefficient 
estimation also in presence of outliers, and is therefore ap-
plied in this study. In particular, reweighted least squares 
(RLS) regression is used for the estimation of the quadratic 
and the square root production functions (equations 1 and 2). 
It is favored here over other robust regression methods (e.g. 
the MM-estimator) due to its good robustness and efficiency 
properties as well as because of the better interpretability of 
indicated outliers [23]. RLS is a weighted LS regression, 
which is based on an analysis of least trimmed squares (LTS) 
regression residuals. The LTS-estimator is a high-breakdown 
estimator that can cope with outlier contamination of up to 
50%. Based on the idea of trimming the largest residuals the 
LTS fitting criterion is defined as follows: 

  

Min
ˆ

(r 2 )
i=1

h

i:n

           (4) 

  
(r 2 )

( i)
 are the ascending ordered squared (robust) residuals 

and h is the so-called trimming constant. In our analysis, 

  
h = (3n + p +1) / 4  is employed [26], with p denoting the 

number of coefficients that are estimated. 

 The computation of LTS coefficients follows an algo-

rithm described in Rousseeuw and Leroy [23]. Due to the 

low efficiency of LTS estimation, it is only used for outlier 

identification. An observation is identified as an outlier if the 

absolute standardized robust residual (
  
r

i
/ ˆ ) exceeds the 

cutoff value of 2.5, with 
 
r

i
 and  ˆ  denoting the (robust) LTS 

residuals and scale estimates, respectively. This cutoff-value 

choice is motivated by a (roughly) 99% tolerance interval for 

Gaussian distributed standardized residuals [25]. With X 

representing the matrix of independent variables and Y the 

vector of the dependent variable, coefficient estimates of 

RLS regression are defined as follows: 

  

ˆ
RLS

= X
'
WX( )

1

X
'
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 The diagonal elements of the weighting matrix 

(
   
W = diag w

1
,…, w

n{ } ) are generated by the indicator func-

tion, IOutlier, that generates weights of zero for observations 

that are identified as outliers and weights of one otherwise: 

  

w
i
= I

Outlier

r
i

ˆ
2.5            (6) 

 RLS regression is applied for coefficient estimation of 
quasi linear functional forms, using the ROBUSTREG pro-
cedure in the SAS statistical package [27]. An example for 
the better robustness properties of RLS compared to LS is 
indicated in Fig. (2). LS coefficient estimates change in the 
presence of outliers, in particular for bad leverage points. In 
contrast, RLS coefficient estimates are not affected by out-
liers in this example. 

 Because LTS regression is not suitable for nonlinear 
problems such as the Mitscherlich-Baule function (equation 
3), non-linear regression approaches are required. Robust 
regression is implemented in this case by using iteratively 
reweighted least squares (IRLS). In order to reduce the influ-
ence of outliers on estimation results, weights are generated 
with M-estimation using Tukey’s biweight [21] such as 
shown in equation (7). These weights are re-estimated at 
each step of iteration until convergence. 

 

Fig. (2). Examples for outlying observations. Note: Regression lines are fitted using ordinary least squares (OLS) and reweighted least 

squares (RLS). Source: According to Sturm and de Haan [25]. 
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r

i
 is the (robust) IRLS residual,  

ˆ  the (robust) scale esti-

mate and c a tuning constant. Following Hogg [28], we em-

ploy the median of absolute deviations from the median for 

robust scale estimation and set the tuning constant to 5.0. In 

contrast to LTS, IRLS is no high breakdown estimation 

technique. In order to validate results, we conduct sensitivity 

analysis of crucial factors such as starting values and tuning 

constant. We use the Levenberg-Marquardt algorithm that 

ensures stable estimation for highly correlated coefficient 

estimates that occur in our analysis [29]. In this study the 

nonlinear Mitscherlich-Baule function is estimated with 

IRLS using the NLIN procedure in the SAS software pack-

age. 

 Besides the most important property of giving trustwor-
thy coefficient estimates, robust regression provides detailed 
insight in the structure of the data. If LS and robust regres-
sion results are considerably different and many outliers are 
identified, the related observations have to be examined. 
Above all, the interpretation of outliers is indispensable. Rul-
ing out that outliers are caused by typing, copying or meas-
uring errors, this interpretation should take not only statisti-
cal but mainly reasons from the agronomic point of view into 
account. Thus, in the following, all estimations are con-
ducted with both least squares and robust regression and 
outlier interpretation is provided. 

RESULTS 

Estimation Results 

 Within our dataset, the year 2003 involves the largest 
number of observations identified as outliers. About 25% of 
the observations that are identified by the RLS method as 
outlier or are given very small weights in the IRLS method, 
can be attributed to this particular year

1
. It is characterized 

by high temperatures and low precipitation in the relevant 
seeding-to-harvest period that caused particularly low corn 
yields in all Europe [30]. Other years with exceptionally low 
levels of precipitation and high temperatures during the corn 
growing season (e.g. 1983, 1991) also frequently occur in the 
lists of outlying observations. 

 The reason for the existence of outliers in these years is 
twofold. First, the yield levels are lower than usually. Sec-
ond, the relationship between independent and dependent 
variables is affected by different reactions to input levels in 
situations where one of the inputs is a limiting factor. The 
yield response to irrigation water is higher than usual if - 
unlike in normal years - water constitutes a limiting factor 
for the plants in the Swiss Plateau. Furthermore, the interac-
tion between fertilizer and irrigation water is higher because 
the plants’ response to nitrogen also highly depends on water 
availability as nitrogen is taken up by the roots in a water 
solution. 

                                                
1 In total RLS identifies 43 outliers for the quadratic production function and 

37 for the square root function. Moreover, 36 observations have weights 

smaller than 0.25 in the IRLS estimation of the Mitscherlich-Baule function. 

 Table 2 presents the estimation results for the quadratic 

and the square root production functions, respectively. The 

coefficient 
 5

 (Applied Nitrogen * Irrigation Water) is not 

significantly different from zero in the four estimated poly-

nomial functions. This indicates that rainfall is sufficient to 

ensure efficient nitrogen uptake under normal climatic condi-

tions in Switzerland. 

Table 2. Coefficient Estimates for the Quadratic and the 

Square Root Production Functions 

 

Variable Least Squares  Reweighted Least Squares  

 Quadratic production function (equation 1) 

Intercept 6638.27 (165.05)** 6661.42 (179.24)** 

N 25.64 (17.62)** 27.55 (22.71)** 

W 6.05 (5.62)** 5.58 (5.75)** 

N2 -0.071 (12.22)** -0.0724 (14.94)** 

W2 -0.018 (3.87)** -0.0162 (3.88)** 

NW 0.0078 (1.51) 0.0037 (0.89) 

adj. R2 0.57 0.71 

 Square root production function (equation 2) 

Intercept 6589.99 (155.02)** 6601.92 (162.13)** 

N1/2 297.18 (12.42)** 313.09 (16.34)** 

W1/2 75.09 (4.26)** 67.14 (4.17)** 

N -11.22 (6.88)** -10.54 (8.15)** 

W -3.03 (2.40)* -2.5 (2.17)* 

(NW)1/2 1.46 (1.43) 0.36 (0.45) 

adj. R2 0.58 0.73 

Note: Statistics in parentheses are t statistics. (**) and (*) indicates significance at the 

1% and 5% level, respectively. 

 

 The Mitscherlich-Baule production function estimates are 

presented in Table 3. It shows that the coefficient estimates 

for irrigation water and water endowment (
 4

 and 5 ) are 

not significantly different from zero at the level of five per-

cent in the LS estimation. In contrast, the coefficients 
 4

 

and 5  are significant at the one percent level if robust re-

gression (IRLS) is used. Moreover, the coefficient estimate 

for 5  increases remarkably if IRLS regression is applied. 

This is explained by the fact that mainly dry years are ex-

cluded or down-weighted in the robust regression, such that 

the estimated soil water endowment is higher for the remain-

ing observations. 

 Yet, the decision on the most appropriate estimation 
technique cannot exclusively be based on statistical meas-
ures. For instance, the goodness of fit cannot be compared 
between different estimations because the deletion of out-
liers, by definition, increases the goodness of fit for the re-
gression on the remaining observations. Hence, conclusions 
on the appropriateness of functional forms and estimation 
techniques can be drawn if and only if the misspecification 



The Application of Robust Regression to a Production Function Comparison The Open Agriculture Journal, 2008, Volume 2    95 

costs are calculated and interpreted, as shown in the subse-
quent section. 

Table 3. Coefficient Estimates for the Mitscherlich-Baule 

Production Function 

 

Variable  Least Squares  
Iteratively Reweighted  

Least Squares  

 1  
9180.6 (95.14)** 9410.3 (87.7)** 

 2  
0.0288 (5.72)** 0.0266 (7.38)** 

 3  
50.6952 (5.96)** 48.3036 (7.75)** 

 4
 0.0598 (1.22) 0.0304 (2.95)** 

 5
 45.14 (1.24) 71.22 (3.10)** 

adj. R2 0.74 0.81 

Note: Statistics in parentheses are t statistics. (**) indicates significance at the 1% and 

5% level, respectively. 

 

Optimal Input Levels and Costs of Misspecification 

 The analysis of production functions usually involves an 
assessment of optimal input and output levels, which is gen-
erally determined through maximization of a suitably de-
fined objective function. For the purpose of our analysis, this 
is given by the subsequent profit function 

  
= P

Corn
f (W , N ) P

Nitrogen
N P

Irrigation
W         (8) 

where the net return (or quasi-rent) per hectare  is equal to 

the gross return (crop price PCorn times corn yield f(W,N)), 

minus total nitrogen costs (nitrogen price PNitrogen times 

amount of nitrogen applied N) and total irrigation costs (irri-

gation price PIrrigation times amount of irrigation water W) per 

hectare. For simplicity, other costs are assumed to be con-

stant and therefore irrelevant for calculating the profit maxi-

mizing input combination. By maximizing the above profit 

function (equation 8), the optimal input levels are deter-

mined through the following first-order conditions, where 

N *
 and W *

 are the profit maximizing input levels of nitro-

gen fertilizer and irrigation water, respectively: 

f (W ,N * )

N
=
PNitrogen
Pcorn

 and 
f (W *,N )

W
=
PIrrigation
Pcorn

        (9) 

 These conditions are satisfied if the input price equals the 
value marginal product of each production factor; i.e., the 
crop price multiplied by the factor’s marginal productivity 
for each input factor. 

 In the further analysis, we set the corn price equal to 
CHF 0.642 kg

-1
, the average annual value for the period 

1981-2003 in Switzerland [31]. We assume a nitrogen price 
of CHF 1.6 kg

-1
 [32], and a price for irrigation water of CHF 

0.06 m
-3

 [20]. Using these data, the optimal input levels are 
calculated according to equation (9) and represented in Table 
4. 

 It shows that all optimal input levels are within the range 
of the data. With 61.3 mm of irrigation water and 111.2 
kg/ha of nitrogen, the lowest input use is recommended by 
the Mitscherlich-Baule function estimated with LS. This 
goes along with the lowest yield (9078 kg/ha) and an esti-
mated net revenue of 5613.55 CHF/ha. In contrast, the robust 
estimated quadratic function shows the highest yield (9859 
kg/ha) and nitrogen use (177.4 kg/ha) and the highest profit 
(5947.68 CHF/ha), while the quadratic LS function implies 
the highest optimal amount of irrigation water with 179.6 
mm. Thus, the quadratic form implies a higher optimal use 
of nitrogen and irrigation water than all other functions. This 
confirms with the evidence given by Anderson and Nelson 
[6] regarding the overestimation of optimal input amounts by 
the quadratic form. 

 Furthermore, the results in Table 4 show that the robust 
versions of production function estimates systematically lead 
to higher profit maximizing yields and higher profits than 
their non-robust counterparts. Moreover, for each functional 
form, the optimal amount of nitrogen fertilizer application 
increases if robust regression results are taken instead of LS 
results. And, except for the case of the Mitscherlich-Baule 
function, robust regression leads to the expected adjustment 
towards lower use of irrigation water in the profit maximiz-
ing situation. 

 It shows that the range of optimal input levels is much 
wider for LS than for robust regression. This indicates that 
differences in optimal input recommendation are not only 
caused by differences in the analyzed functional forms but 
also caused by the effect of outliers on LS estimation. All in 
all, the use of robust estimation narrows the range of optimal 
input levels across the different functional forms. Thus, the 
application of robust regression to production function esti-
mation reduces the differences between different functional 
forms. 

Table 4. Optimal Input Levels, Yield, and Maximum Net Return 

 

Functional Form-Estimation  

Method 

Optimal Amount of  

Nitrogen Applied (kg/ha) 

Optimal Amount of  

Irrigation Water Applied (mm) 

Optimal  

Yield (kg/ha) 

Maximum Net  

Return (CHF/ha) 

Quadratic-LS 172.8 179.6 9695 5840.32 

Square Root-LS 131.3 133.9 9180 5602.82 

Mitscherlich-Baule-LS 111.2 61.3 9078 5613.55 

Quadratic-RLS 177.4 163.8 9859 5947.68 

Square Root-RLS 147.7 108.6 9324 5684.56 

Mitscherlich-Baule-IRLS 124.9 116.7 9286 5691.51 

Note: LS indicates least squares, RLS reweighted least squares, and IRLS iteratively reweighted least squares estimation. 
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 Table 4 shows furthermore that the selection of the func-
tional form and the selection of the estimation method both 
affect the result of the economic optimization and allocation 
problem. This relates to the concept of misspecification 
costs, which we employ for the final evaluation of produc-
tion functions and estimation methods. The relative costs of 
misspecification are defined as the decrease in net return if 
optimal input levels of an incorrect function are used instead 
of those of the real underlying production function. With this 
concept, the potential loss of a misspecification of the pro-
duction function is minimized. Usually, the focus is on the 
potential loss due to the wrong functional form. In the fol-
lowing, we also consider the costs of using the improper 
estimation technique. 

 Table 5 gives the relative costs of misspecification. The 
nine cells in the upper left-hand corner correspond to the 
traditional approach where only functional forms estimated 
with LS are compared. If for instance the quadratic function 
would be the true underlying form, the use of the square root 
function induces a cost of misspecification of CHF 93.01. 
For the Mitscherlich-Baule function, this increases to CHF 
297.88. The latter exhibits the highest costs of misspecifica-
tion, while the square root function is the most appropriate if 
the misspecification-cost criterion is employed. 

 The square root function is similar to the quadratic form, 
but flatter in its surface and comes therefore closer to the 
plateau approach of the Mitscherlich-Baule specification [1]. 
Optimal input recommendations based on the square root 
function are correspondingly situated between those of the 
other two approaches we consider here. 

 Table 5 further reveals that, in most cases, the use of ro-
bust estimation methods results in lower costs of misspecifi-
cation than the standard LS approach, and that the square 
root specification performs better under this criterion than 
the other functional forms. This can be seen when comparing 
the top left-hand cells with the bottom right-hand ones, as 
well as from the comparison of the misspecification costs in 
the different lines of Table 5. Only in the cases where the 
square root specifications are assumed to be the true underly-
ing functions does the quadratic LS estimation show slightly 
lower costs of misspecification than its RLS counterpart. 
Furthermore, square root function estimation with LS leads 
to a marginally lower decrease of the net profit than its ro-
bust counterpart if the Mitscherlich-Baule-LS is assumed to  
 

be the underlying function. Altogether, this supports the sug-
gestion that the RLS estimation of the square root function is 
the best approximation of the here analyzed crop response 
relationship with regard to nitrogen fertilization and irriga-
tion. 

SUMMARY AND CONCLUSIONS 

 The improved estimation of production functions might 
be valuable in practice because crop production functions are 
widely applied, for instance, to assess agro-environmental 
policy measures [13] to compare cropping systems [12] or to 
project future agricultural water demand [16]. 

 In our study, simulated corn yield data for the Swiss Pla-
teau are used for the estimation of crop production functions, 
with particular consideration of yield response to nitrogen 
fertilizer and irrigation water application. Three functional 
forms are considered: the quadratic, the square root, and the 
Mitscherlich-Baule function. In addition, robust and standard 
regression methods are used for the estimation. 

 We found the square root function to be the most appro-
priate form to represent the data generated with corn yield 
simulations for Switzerland. Furthermore, exceptional cli-
matic events, such as the summer drought in 2003, are 
proved to be the major source of misleading results if the 
least squares criterion is used to estimate production function 
coefficients. Robust regression methods are recommended 
instead. The use of robust estimation narrows the range of 
optimal input levels across the different functional forms. 
Thus, differences between functional forms are reduced by 
applying robust regression. This conclusion is further sup-
ported by a comparison of the relative costs of misspecifica-
tion. Using robust instead of least squares regression gener-
ally results in lower costs of misspecification. Irrespective of 
the true underlying functional form, optimal input levels 
based on robust estimated functions reduce the maximum 
costs of misspecification compared to the counterparts esti-
mated with least squares regression. Thus, our investigation 
shows that, besides the functional form, the estimation 
method is decisive for production function comparisons. 

 This is even more important for climate change related 
questions. Climate - and thus crop yield - extreme events are 
expected to occur more often in the future due to climatic 
change [e.g. 33]. The properties of robust regression to en-
sure efficient and reliable coefficient estimation in presence  
 

Table 5. Relative Costs of Misspecification 

 

Cost (in CHF/ha) of using Optimal Input Levels Based on: 

When the True Function is: Quadratic-LS 
Square  

Root-LS 

Mitscherlich- 

Baule-LS 
Quadratic-RLS Square Root-RLS Mitscherlich-Baule-IRLS 

Quadratic-LS 0 93.01 297.88 4.23 77.85 135.18 

Square Root-LS 30.61 0 39.83 32.13 8.41 2.01 

Mitscherlich-Baule-LS 113.22 41.38 0 109.97 41.86 27.34 

Quadratic-RLS 3.77 104.65 296.39 0 68.59 145.23 

Square Root-RLS 7.18 27.08 35.49 8.45 0 23.14 

Mitscherlich - Baule-IRLS 57.52 54.08 3.11 51.85 9.86 0 

Note: LS indicates least squares, RLS reweighted least squares and IRLS iteratively reweighted least squares estimation. 
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of outliers might thus be particularly valuable for applica-
tions and economic assessments related to climate change 
issues [e.g. 14]. 

 Altogether, robust regression is a valuable tool for a wide 
range of modeling problems that require a proper representa-
tion of crop response functions to variable inputs, such as 
nitrogen fertilizer and irrigation water. Further research 
should apply other data sets and other robust regression 
methods, such as MM-estimation, to validate the here pre-
sented results. Moreover, in a further step of economic 
analysis, the observations that are identified as outliers 
should be re-incorporated in the optimization model. Regres-
sion residuals from production function estimation can be 
used to estimate yield variation with respect to input use. 
Production and yield variation functions can then be inte-
grated into a utility maximization model that augments the 
here presented profit maximization approach [e.g. 34]. Thus, 
the application of robust regression can improve the estima-
tion of both production and yield variation functions. 
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ABBREVIATIONS 

CHF = Swiss Francs 

IRLS = Iteratively reweighted least squares 

LS = Least squares 

LTS = Least trimmed squares 

RLS = Reweighted least squares 
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