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Abstract:

Aims: Agriculture is one of the fundamental elements of human civilization. Crops and plant leaves are susceptible to
many illnesses when grown for agricultural purposes. There may be less possibility of further harm to the plants if the
illnesses are identified and classified accurately and early on.

Background: Plant leaf diseases are typically predicted and classified by farmers tediously and inaccurately. Manual
identification of diseases may take more time and may not accurately detect the disease. There could be a major drop
in production if crop plants are destroyed due to slow detection and classification of plant illnesses. Radiologists used
to segment leaf lesions manually, which takes a lot of time and work.

Objective: It is established that deep learning models are superior to human specialists in the diagnosis of lesions on
plant  leaves.  Here,  the  “Deep  Convolutional  Neural  Network  (DCNN)”  based  encoder-decoder  architecture  is
suggested for the semantic segmentation of leaf lesions.

Methods:  A  proposed  semantic  segmentation  model  is  based  on  the  Dense-Net  encoder.  The  LinkNet-34
segmentation model performance is compared with two other models,  SegNet and PSPNet.  Additionally,  the two
encoders, ResNeXt and InceptionV3, have been compared to the performance of DenseNet-121, the encoder used in
the LinkNet-34 model.  After  that,  two different  optimizers,  such as  Adam and Adamax,  are  used to  optimize  the
proposed model.

Results: The DenseNet-121 encoder utilizing Adam optimizer has been outperformed by the LinkNet-34 model, with
a dice coefficient of 95% and a Jaccard Index of 93.2% with a validation accuracy of 97.57%.

Conclusion:  The  detection  and  classification  of  leaf  disease  with  deep  learning  models  gives  better  results  in
comparison with other models.

Keywords:  Plant  leaf  disease,  Convolutional  neural  network  (CNN),  Semantic  segmentation,  Encoder-decoder,
Detection, Classification.
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1. INTRODUCTION
One of the biggest issues facing precision agriculture

in recent years has been the automated diagnosis of plant
diseases.  Insect,  bacterial,  and  fungal  diseases  reduce
productivity and output in agriculture as well as economic
losses [1-3]. Leaf diseases are difficult to categorize due to
significant similarities within classes and intricate design
changes. Plant diseases may spread more quickly because
of  climate  change.  Early  detection  of  diseases  on  plant
leaves is one of the most important factors in guaranteeing
high  agricultural  yield.  Agriculture  is  a  significant
economic sector in India, contributing around 15.87% of
the nation's GDP and 54.15% of jobs [4, 5]. Even though
this  business  has  come  a  long  way  in  the  previous  few
years, crop damage from pests and diseases remains a big
concern. Early disease identification on plant leaves is the
primary barrier to agricultural productivity. Plant diseases
have a detrimental effect on food production and quality
and, in many cases, can lead to a full loss of crop [6,7].

Early  detection  and  therapy  are  difficult  since  these
anomalies are difficult to diagnose. In certain situations,
crop  losses  may  be  reduced  by  early  discovery  and
treatment.  Furthermore,  there  is  a  chance  to  raise  the
yield and quality of the final agricultural output. Keeping
track  of  every  indication  and  symptom  that  an  illness
produces in real time might be difficult [8, 9]. Erroneous
disease identification is always a potential when it comes
to subjective analysis. Occasionally, plant pathologists or
agronomists may even misidentify the disease, leading to
inadequate preventative actions [10].

The  terms  “Machine  Learning  (ML)”  and  “Deep
Learning (DL)” have lately gained traction in response to
the countless ways artificial intelligence is being used in
daily  life.  In  terms  of  usability,  these  words  enable
machines  to  “learn”  many  patterns  before  acting  upon
them [11,  12].  Applications can improve their  prediction
accuracy  thanks  to  ML  and  DL,  even  if  they  were  not
designed  with  that  purpose  in  mind.  The  relationship
between deep learning and computer vision has led to the
development of intelligent algorithms that can analyse and
categorize  patterns  or  images  more  precisely  than
humans. In the field of agriculture, the application of deep
learning-based techniques is beginning to grow.

Deep learning has transformed the field  of  computer
vision and is currently capable of handling a wide range of
tasks,  including  automatic  crop  lesion  identification,

maintaining  soil  fertility,  predicting  rainfall,  predicting
crop  production,  etc  [13].  Machine  learning  techniques
have  been applied  to  the  identification  of  crop  diseases.
However, their scope and research are limited to disease
classification of  the crop.  Furthermore,  because farmers
are  ignorant  of  and  unaware  of  biotic  and  abiotic  leaf
diseases  in  crops  that  are  invisible  to  the  human  eye.
Farmers  will  benefit  from  early  leaf  disease  detection
when treating crops and plants to prevent disease [14]. A
plant's  physical  properties  alter  with  sickness,  and  this
affects the plant's ability to grow. Deep learning methods
must thus be applied to ascertain the leaf's morphological
characteristics. In addition, using the proposed DL model,
plant leaf lesions were found and diagnosed early in this
work. The CNN model has been the primary focus of the
effort to characterize the morphological qualities of leaves
since  it  will  increase  lesion  identification  efficiency  and
accuracy.  The  extent  and  significance  of  the  yield  loss
resulting from these lesions are acknowledged in a variety
of stressful situations.

There  are  numerous  methods  for  disease  detection
depending  on  where  the  illness  is  most  prevalent  in  a
plant,  such as a node,  stem, or  leaf.  In a  study [15],  the
authors  offer  a  novel  deep  learning  method  called  “Ant
Colony  Optimization  with  Convolution  Neural  Network
(ACO-CNN)”  for  the  diagnosis  and  categorization  of
diseases.  Ant  colony  optimization  was  used  to  examine
how well disease identification in plant leaves worked. The
CNN classifier is used to remove color, texture, and plant
leaf arrangement from the given photos. In research [16],
the  authors  suggested  a  transfer  learning  strategy
combined  with  the  CNN  model  known  as  the  Modified
“InceptionResNet-V2  (MIR-V2)”  to  identify  diseases  in
pictures  of  tomato  leaves.  With  the  used  models,  the
disease classification accuracy rate is 98.92%, and the F1
score is 97.94%. In a study [17], the author suggested the
“Agriculture Detection (AgriDet)” framework, which uses
deep learning networks based on Kohonen and traditional
“Inception-Visual Geometry Group Network (INC-VGGN)”
to  identify  plant  illnesses  and  categorize  the  severity  of
affected  plants.  In  a  research,  [18]  an  author  offers  the
novel “Deeper Lightweight Convolutional Neural Network
Architecture  (DLMC-Net)”  for  real-time  agricultural
applications that can detect plant leaf diseases in a variety
of  crops.  Moreover,  to  extract  deep  characteristics,  a
series of collective blocks is introduced in conjunction with
the passage layer.
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In  a  study,  [19]  an  adapted  PDICNet  model  for  the
identification and categorization of plant leaf diseases is
presented  in  this  article.  Additionally,  to  produce
optimized and salient characteristics with a reduced size
of  the  MRDOA,  the  “Modified  Red  Deer  optimization
algorithm  (MRDOA)”  is  also  implemented  as  an  optimal
feature selection algorithm. Likewise, to further improve
classification  performance,  a  “Deep  Learning  Convo-
lutional  Neural  Network  (DLCNN)”  classifier  model  is
used.  In  another  research  [20],  the  authors  use
convolution  neural  network  (CNN)  techniques,  and  we
also  looked  at  five  kinds  of  potato  diseases:  Pink  Rot,
Black  Scurf,  Common  Scab,  Black  Leg,  and  Healthy.  A
database with 5,000 photos of potatoes was employed. We
contrasted the outcomes of our approach with alternative
approaches for classifying potato defects. Furthermore, to
identify  foliar  diseases  in  plants,  the  authors  of  a  study
[21]  propose  utilizing  a  special  hybrid  random  forest
Multiclass  SVM  (HRF-MCSVM)  design.  Likewise,  to
improve  computation  accuracy,  the  image  features  are
pre-processed  and  segmented  using  Spatial  Fuzzy  C-
Means  prior  to  classification.

In  a  study,  [22]  the  authors  discussed  that  despite
testing  numerous  algorithms,  CNN  turned  out  to  be
incredibly effective and productive. The suggested model
outperforms all other methods by requiring less computing
time when tested on the test set, achieving an accuracy of
99.39% with a minimal error rate. Suggested HDL models
in a study [23] demonstrated exceptional performance on
the “IARI-TomEBD dataset” and achieved a high degree of
accuracy in the range of 87.5%. Additionally, PlantVillage-
TomEBD and Plant Village-BBLS, two publicly accessible
plant  disease  datasets,  were  used  to  validate  the
suggested  methodology.  Lastly,  the  mean  rank  of  HDL
models  has  also  been  determined  using  the  Friedman
statistical  test.  Out  of  the  three  plant  disease  datasets,
“EfNet-B3-ADB”  and  “EfNet-B3-SGB”  had  the  highest
rank,  according  to  the  results.  In  addition,  because  this
study  covers  14  different  classifications  of  plant/crop
species  and  36  diseases,  it  is  a  comprehensive  way  that
researchers  need  to  develop  and  implement  a  system
model.  This  research  paper  discusses  common  imaging
techniques for object analysis and classification. Our study
attempts  to  duplicate  the  algorithm that  offers  the  most
precise forecasts for the detection of plant leaf diseases.
The results  are  expected to  be  utilized to  determine the
optimal  method  for  creating  a  smart  system  that  can
detect  leaf  illnesses.

The main contribution in this work is given as follows:
1.  The  three  different  encoder  segmentation  models

are proposed for the detection of lesions. The LinkNet-34
shows better detection results in terms of dice coefficient
and Jaccard index. The proposed method used LinkNet-34,
PSPNet, and SegNet and LinkNet-34 achieved a validation
accuracy of 97.57%.

2. The performances of three classification models are
then  compared,  and  DenseNet  shows  better  accuracy
results with Adam and Adamax optimizer with a learning

rate of 0.0001.
3.  Using a  dataset  of  51,806 images representing 36

types  of  plant  leaf  diseases  to  verify  the  efficacy  and
precision  of  the  proposed  hybrid  approach

4. The outcome is assessed using a variety of criteria,
including memory, accuracy, and precision.

The rest of the paper is organized as follows: Section 2
describes  the  methods  and  materials  used,  and  the
proposed  model  is  detailed  in  Section  3.  The  result  and
discussion of our proposed model are discussed in section
4.  Finally,  section  5  presents  the  conclusion  of  future
work.

2. MATERIALS AND METHODS
The  proposed  state-of-the-art  hybrid  approach  is

explained, which classifies the lesions on specific plants by
using a CNN model trained on various crop leaf pictures.

2.1. Materials

2.1.1. Data Collection
Plant Village [24] provided the plant leaf photos that

were  utilized  to  assess  the  performances  (accessed  on
January  20,  2024).  A  public  dataset  called  Plant  Village
Datasets  (PlantVillageDataset)  includes  54,305  plant
leaves—both healthy and diseased—that were gathered in
a controlled environment. Fourteen distinct crop kinds are
included by the datasets: Apple, bluberry, Grape, Orange
Cherry,  Potato  Peach  Raspberry,  and  Strawberry  Soy
Squash. Fig. (1) displays a selection of sample images, and
Fig.  (2)  provides  an  overview  of  the  quantity  of  picture
datasets collected for lesion identification and detection. It
also includes the sample sizes for training and testing. The
following  common  stresses  cause  diseases:  water
availability, temperature, nutrients, bacteria, viruses, and
fungi.

Fig. (1). Sample examples of plant leaf images.
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Fig. (2). Number of plant disease dataset samples.

The data collection technique is essential in real-time
operations  since  inaccurate  data  in  a  dataset  can  affect
how an experiment turns out. Therefore, when gathering
data,  it  is  important  to  state  and adhere  to  the  common
norm.

The 51,806-image dataset is divided into two subsets,

with  an  80:20  training-to-testing  ratio.  Thirteen  of  the
thirty-eight classes that make up our data are the healthy
classes, whereas the remaining twenty-seven classes show
different plant leaf diseases. A collection of RGB images of
256 × 256 pixels  depicting leaves  make up the informa-
tion.  It  is  possible  to  distinguish  between  healthy  and
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diseased  leaves  based  on  their  photo  classifications.
During  the  photo  shoot,  care  was  taken  to  ensure  that
every picture included a single centroid leaf. In addition,
the lighting and shooting environment remain consistent.
After analysing a range of data, it is only natural to have
questions about how to use the information efficiently.

2.1.2. Pre-Processing and Augmentation
It  is  well  known that  data  gathered  from any  source

can  become  contaminated  by  several  elements,  such  as
noise and human mistakes. If the algorithm uses such data
directly, it can yield erroneous results. Thus, the next step
is to pre-process the input data. Pre-processing of data is
done  to  enhance  its  quality,  minimize  or  remove  noise
from  the  original  input  data,  etc.  Among  the  pre-
processing  methods  are  noise  reduction,  scaling,  color
space  modification,  and  image  enhancement.  The  leaf
image in this work is scaled to 224 x 224 x 3, which is then
utilized to assess the Hybrid model's performance. Fig. (3)
shows the sample of the image after pre-processing.

Following  the  RGB  to  BGR  conversion,  each  color
component  maintains  its  zero  centres  about  the
PlantVillage dataset without scaling. Data augmentation,
such as horizontal shift, vertical shift, flips, and zoom, is
crucial for data preparation to increase the picture count
and reduce overfitting.

2.2. Methods
In  this  paper,  semantic  leaf  disease  segmentation

using  deep  convolutional  neural  networks  and  encoder-
decoder  architecture  was  applied  to  a  dataset  of  plant
images.  The  goal  was  to  create  a  high-density

segmentation map of a picture where each pixel is linked
to  a  different  kind  of  object  or  category.  The  three
different  semantic  segmentation  models  used  for  the
detection of lesions are LinkNet-34, PSPNet, and SegNet.
The  detected  lesions  are  then  classified  using  different
classifiers named DenseNet-121 and ResNext-101, which
are discussed in the sections below.

2.2.1. Object Detection Models
The  images  of  the  plant  leaves  are  fed  into  both

semantic  segmentation  models.  The  model  is  simulated
using two semantic segmentation models: LinkNet-34 [25],
PSPNet  [26],  and  SegNet  [27].  This  module-based
semantic  segmentation  paradigm  makes  use  of  context
aggregation  based  on  distinct  regions  to  use  global
context  information.  Together,  global  and  local  cues
enhance the ultimate prognosis. Furthermore, this method
is based on the U-Net architecture,  which is  well  known
for  its  efficiency  in  semantic  segmentation  tasks.  It  may
divide up a wide variety of items, including things visible
in  satellite  photos  and  medical  imaging.  The  purpose  of
the LinkNet-34 design is to improve segmentation model
training by integrating decoder and encoder techniques to
make the process more efficient and productive. It is made
up of a decoder network that up-samples the feature map
to  produce  predictions  at  the  pixel  level  and  a  down-
sampling network that down-samples the input picture to
extract high-level features. Skip connections are used by
LinkNet-34 to link the encoder and decoder. Moreover, by
leveraging skip connections,  which are similar  to U-Net,
low-level  features  can  be  propagated  directly  to  the
decoder and combined with high-level information. Fig. (4)
shows the object segmentation.

Fig. (3a-c). After pre-processing of the image.



6   The Open Agriculture Journal, 2024, Vol. 18 Trivedi et al.

Fig. (4). Object segmentation using semantic segmentation of the image.

PSPNet  excels  in  challenges  involving  semantic
segmentation. Moreover, by giving each pixel in an input
image a semantic label, semantic segmentation attempts
to  separate  the  image  into  areas  that  correspond  to
several  item  categories.  PSPNet  uses  pyramid  pooling
modules  to  extract  multi-scale  context  information  from
various  input  image  regions.  This  aids  in  the  model's
ability to forecast pixels more accurately, particularly for
objects of different sizes. PSPNet uses a pyramid structure
in  which  contextual  information  is  captured  by  applying
global  pooling  at  various  scales  and  repeatedly
downsampling  the  input  feature  map.  Pixel-level
predictions  are  then  produced  by  combining  and  up-
sampling  the  data.  PSPNet  captures  context  by  global
pooling at various pyramid levels, but it does not use the
explicit feature fusion step that FPN does. Convolutional
layers  are  used  instead  for  feature  combining  and  up-
sampling.  PSPNet  works  well  for  tasks  like  fine-grained
object  recognition,  picture  segmentation,  and  scene
parsing,  where  pixel-level  segmentation  is  crucial.

Seg-Net  is  an  encoder-decoder  model  that  has  26

convolutional  layers  in  total.  Thirteen  Convo  layers  are
present in the VGG16 network in both the contraction and
expansion  paths.  Two  fully  connected  (FC)  layers  are
employed between the encoder and decoder networks. The
process  of  creating  a  set  of  feature  maps  is  called
“Rectified Linear Unit (ReLU).” This combination is used
in downsampling up to a 1024 filter size.

Following each layer is a max-pooling operation with a
stride  of  2  for  the  feature  map's  downsampling.  The
number of feature channels/filter banks is doubled at the
downsampling  stage.  There  is  a  matching  decoder  layer
for each encoder layer.

The  decoder  up-samples  the  input  feature  map  by  a
factor  of  two.  While  the  decoder  has  a  multi-channel
feature  map,  the  first  encoder  only  has  three  channels.
The multi-dimensional feature map result is then utilized
to solve the two-class classification problem by employing
the sigmoid function to distinguish the plant pixels  from
the  background.  Seg-Net  is  a  semantic-based  scene
segmentation  technique.

Image segmentation of tomato 
leaf (Septoria Leaf Spot)

Image segmentation of tomato 
leaf (Early Blight)

Image segmentation of tomato leaf 
image (Late Blight)
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2.2.2. Classification Models
The  CNN  network  DenseNet121  [28]  features  feed-

forward coupling between all its layers. A layer's input is
the  concatenation  of  all  the  feature  maps  from  the
previous  levels  shown  in  Fig.  (3).  The  N-layer  networks
are  considered as  an  example.  Furthermore,  to  create  n
inputs for the network's nth layer, all feature maps from
the  layers  before  it  is  combined.  After  that,  the  feature
map  is  sent  to  the  next  n  inputs  for  the  nth  layers.
Consequently,  all  the  network's  tiers  are  connected  are
represented  as  .  This  approach  has  the  added
benefit  of  having  fewer  network  parameters  than  a
traditional  convolutional  neural  network,  aside  from  the
fact that redundant feature mappings are not re-learned.
Dense  connection  patterns  give  gradients  from  the  loss
function and the initial input signal instant access, which
improves  gradient  flow  and  information  across  the
network. This mitigates the effects of vanishing gradient
problems that could occur while deeper architectures are
being trained. Eq. (1) represents the dense connectedness
of the network as the layer n input.

(1)

where  Li  is  the  layer's  input,  and  Tr([L  0,  L1,  L2,...  ...
..LL-1) is made up of feature maps from layers 0 to L-1 and
concatenated  together.  The  “Transition  Block  (TB)”  and
the “Density Block (DB)” are the two primary construction
network varieties. Dense blocks are composed of multiple
“Dense Layers (DL)”, one layer 1 x 1 Conv and 3 x 3 Conv
layers comprise each DL layer.

The 1 x  1 Convolution layers,  2  x  2  averaging pooling
layers,  and  batch  normalization  layers  that  make  up
transition blocks are arranged in descending order between
the  dense  blocks.  DenseNet121,  one  DenseNet  network
implementation, includes four dense blocks with six, twelve,
twenty-four,  and  sixteen  sequentially  organized  dense
layers  in  each.  Fig.  (5)  displays  the  diagrammatical
representation  of  DenseNet121.  Aggre-  gated  Residual
Transform Network, or ResNeXt for short, is a CNN design
that  expands  on  the  ideas  of  “Inception  Networks  and
Residual  Networks  (ResNets).”  It  highlights  the  notion  of
cardinality to enhance performance and presents the idea of
a divide, transform, and merge block. A divide, transform,
and  merge  block—which  applies  several  transformations
within  the  block—is  used  in  ResNeXt.  These
transformations  aid  in  the  acquisition  of  various
representations  and  the  capture  of  various  abstraction
levels.  The number of  transformation pathways inside the
block  is  specified  by  the  cardinality  parameter,  which  is
introduced.  It  has  been  demonstrated  that  raising
cardinality improves the model's performance. ResNeXt has
shown remarkable performance in several computer vision
tasks,  such  as  object  detection,  image  segmentation,  and
image  classification.  ResNets,  Inception  Networks,  and
cardinality-based transformations are combined to produce
ResNeXt,  which  improves  accuracy  while  preserving
computational  efficiency.  It  should  be  noted  that

implementations  and  modifications  may  change  the
specifics of ResNeXt's architecture, including the number of
layers, cardinality, and block configurations. Inception V3 is
the third iteration of Google's Deep Learning Evolutionary
Architectures  series.  Images  at  a  resolution  of  299  ×299
pixels  are  captured  by  the  input  layer  of  the  42-layer
Inception  V3  architecture,  which  includes  the  Softmax
function  in  the  last  layer.

3. PROPOSED MODEL
For  the  semantic  segmentation  of  plant  leaf  diseases,

“Deep  Convolutional  Neural  Network  (DCNN)”  based
encoder-decoder architecture is employed here. 80% of the
dataset is used for testing, while the remaining 20% is used
for  training.  The  encoder  uses  a  few  filters  and  pooling
operations to extract features from the input image to make
pixel-by-pixel  predictions.  Then,  the  decoder  gradually
restores the encoder's low-resolution feature maps to their
original,  full  input  resolution.  The  aim  of  this  study  is  to
create a high-density segmentation map of an image where
each pixel is linked to a unique class or kind of object. For
modelling,  the  four  semantic  segmentation  models—
LinkNet-34,  PSPNet,  and  SegNet—are  fed  leaf  disease
images as input. Three models are compared based on their
validation  “dice  coefficient,”  validation  mean  “Jaccard
index,”  and  training  and  validation  “loss  curves.”  After
examining four models, it can be said that the LinkNet-34
model performs the best when considering all performance
metrics.  Fig.  (6)  shows  the  suggested  process  for  the
detection and classification of leaf disease. Downsampling
of the input image is done during the encoder step of auto-
encoder neural network image segmentation. An encoder-
decoder  neural  network  design  needs  an  encoder
component to learn the spatial and semantic features of an
image.  The encoder  takes  an  image as  input  and reduces
the resolution of  the image using many convolutional  and
pooling layers. Reducing the amount of processing load on
the  decoder  is  possible  by  down  sampling  and  extracting
the most important visual qualities.

The encoder portion's picture downsampling is the main
emphasis  of  the  suggested  technique.  To  ascertain  which
encoder performs best, a simulation is conducted utilizing
three  distinct  encoders  on  the  LinkNet-34  architecture:
DenseNet121, ResNext, and InceptionV3. When compared
to  PSPNet  and  SegNet  models,  the  experimental  analysis
shows  that  the  LinkNet-34  model  performs  the  best  for
semantic  segmentation.  Subsequently,  the  optimal
LinkNet-34  model  is  subjected  to  three  distinct  encoder
applications:  DenseNet121,  ResNext,  and  InceptionV3  of
these, DenseNet121 has demonstrated the highest encoder
performance.  The  findings  support  the  proposal  of  the
LinkNet-34 model with the DenseNet121 encoder for lesion
segmentation  from  plant  disease  images.  Finally,  using
Adam optimizers, the recommended model's parameters are
changed to successfully lower the loss function. This is an
important step in the training process because the model's
performance  and  training  speed  can  be  significantly
impacted  by  the  optimizer  selection  and  its  hyper-
parameters.
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Fig. (5). DenseNet model representation.

Fig. (6). Proposed methodology for plant leaf lesion detection and classification.

4. RESULTS
Here,  a  semantic  segmentation  model  based  on  an

intelligent LinkNet-34 model with a DenseNet121 encoder
is  provided.  The  performance  of  two  other  models—
SegNet  and  PSPNet—is  compared  with  the  LinkNet-34
model. Additionally, two different encoders—ResNext and
InceptionV3—have  been  compared  to  see  how  well  the
DenseNet121  performs  as  an  encoder  in  the  LinkNet-34
model.  After  that,  the  suggested  method  is  improved  by
employing the Adam optimizer.

4.1. Evaluation Metrics
The  result  of  plant  leaf  lesion  detection  is  evaluated

based on different evaluation metrics, namely, precision,
recall,  f1-score,  accuracy,  Jaccard,  and  dice  coefficient.
The  ratio  of  accurately  detected  targets  to  all  detected
targets by the model is represented by the precision “Pre.”
Eq.  (2)  provides  the  precision  rate  calculation  formula.
Within  the  formula,  “TP”  indicates  that  the  forecast  is
accurate  regarding  leaf  disease,  whereas  “FP”  indicates
that  the  prediction  is  inaccurate  regarding  plant  leaf
lesions  [29].

Input Plant Leaf 
Images

Lesion Detection 
using LinkNet-34, 

PSPNet, and SegNet

Selection of best 
segmentation model

Classification encoder 
evaluation using 
DenseNet121, 
ResNext, and 
InceptionV3

Best encoder selected

Proposed model using 
LinkNet-34 and 

DenseNet121 encoder

Optimizer result 
evaluation

Best optimizer 
selected

Evaluate segmented 
result in %
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(2)

Recall  “Rec”  is  a  percentage  that  represents  the
percentage  of  all  targets  that  the  model  accurately
anticipated  [30].  Eq.  (3)  provides  the  recall  rate
calculation formula. “FN” denotes an inaccurate detection
by the model of leaf lesions, which is the target.

(3)

The  F1  score  is  an  extra  metric  for  classification
accuracy  that  takes  recall  and  precision  into  account.
Since  the  F1-score  is  a  harmonic  mean  of  the  Precision
and  Recall  values,  it  offers  a  comprehensive
comprehension  of  both  [31].  Eq.  (4)  indicates  that  it  is
maximal when Precision and Recall are equal.

(4)

One parameter used to assess classification models is
accuracy. Roughly speaking, accuracy is the percentage of
correct predictions our model made. According to formal
definitions,  accuracy  is  the  proportion  of  accurately
labelled images to all samples [32, 33]. The Eq. (5) shows
the mathematical representation of accuracy.

(5)

Eq. (6) uses the “Jaccard Index (JAC)” to calculate the
intersection  spatial  overlap  divided  by  the  union  size  of
two label sets.

(6)

The  spatial  overlap  between  two  binary  pictures  is
measured  by  the  “Dice  Similarity  Coefficient  (DSC),”
whose  values  range  from  zero  (non-overlapped)  to  one
(perfect  overlapped).  Eq.  (7)  yields  the  segmentation
result  and  the  ground  truth,  or  DSC  values.

(7)

The  model  predicts  the  likelihood  that  an  image  will
belong  to  each  class  and  is  used  to  categorize  a  huge
number of generated photos.

4.2.  Result  Based  on  Segmentation  and
Classification

The  dataset  of  41465  plant  leaf  diseases  has  been
subjected  to  the  LinkNet-34  model's  application.  The
training  and  validation  curves  for  the  LinkNet-34  model
architecture are shown across 50 epochs, as shown in Fig.
(5).  The  validation  loss  for  the  23rd  and  40th  epochs,
respectively, is 0.008 and 0.006. It can be shown that loss
diminishes  with  increasing  epochs  if  this  pattern  is
generalized.  The  dice  coefficient  and  the  Jaccard  index
have  a  high  association.  For  every  scenario,  the  model
rankings derived from the two criteria are identical. The
Jaccard  index  value  reaches  up  after  every  10  epochs.
After the 42nd epoch, the dice value with the LinkNet-34
segmentation model reaches a maximum of 95% and turns
constant till the 50th epoch.
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Fig. (7a-c). Graphical representation of segmentation values.

As  shown  in  Fig.  (7)  the  LinkNet-34  segments  the
lesion  objects  with  dice  segmentation  of  95.2%  and  a
Jaccard index of 93.2%. Fig. (5a) shows the segmentation
of  the LinkNet-34 model,  (b)  shows the value of  PSPNet
and  (c)  shows  the  segmentation  value  of  the  SegNet
model. The dice coefficient value drops down after the 20th

epoch  and  then  scales  up  with  a  value  of  93%  and

continues  with  a  value  of  93.2%  after  the  44th  epoch.
Concerning  this  dice  value,  the  Jaccard  index  shows  a
maximum value of 92.1%. The SegNet segmentation model
does  not  detect  the  lesions  of  plant  leaves  with  better
detection  parameters.  It  shows  a  dice  coefficient  of
941.1%  with  a  Jaccard  of  90%.  From  the  above  three
segmentation models, the LinkNet-34 detects the lesions
better as compared with the other two models.

Fig. (8). Comparison of segmentation models.
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From Fig. (8), it is visible that the LinkNet-34 detects
the plant leaf lesions with a maximum dice coefficient of
95%,  and  SegNet  detects  it  with  a  value  of  91.10%.  As
shown in Fig. (9) the LinkeNet-34 detects the lesions with
better  accuracy  in  comparison  with  other  segmentation
models.  The  LinkNet-34  correctly  identifies  the  lesion
objects  as  other  models  detect  lesions  with  healthy
objects.

Fig.  (9).  Lesion  detection  using  DenseNet-121,  ResNext,  and
InceptionV3.

As shown in Fig. (9), DenseNet121 detects lesions with
better  accuracy  in  comparison  with  the  other  two

classification models. Table 1 shows the result in terms of
different evaluation metrics using different classifiers.

The DenseNet-121 detects and classifies the objects as
healthy  and  unhealthy  with  a  validation  accuracy  of
97.57%  which  is  far  better  in  comparison  with  other
models.  The  existing  CNN  model  ResNet  has  taken  less
time  compared  to  other  models.  Table  1  shows  the
evaluation  result  of  all  the  models  with  different
evaluation metrics such as accuracy, validation accuracy,
precision,  validation  precision,  recall,  and  loss.  The
graphical representation of the evaluation result is shown
in Fig. (10).

The  LinkNet-34  segments  the  lesion  objects  with
better  results  in  comparison  with  SegNet  and  PSPNet.
Then, the proposed model combines the LinkNet-34 with
DenseNet-121,  ResNext,  and  InceptionV3.  From  these
proposed  models,  the  LinkeNet-34  and  DenseNet-121
models show better detection and classification results as
compared with other models. The loss with DenseNet-121
is  0.33  which  is  the  smallest  among  all  the  models.  It
detects the lesion part with better accuracy results.

Table 1. Performance evaluation result.

- ResNet DenseNet-121 InceptionV3

Accuracy 99.60% 97.81% 75.67%
Validation Accuracy 87.88% 97.57% 79.37%

Precision 98.60% 98.91% 86.82%
Validation Precision 88.54% 97.98% 85.82%

Recall 99.57% 96.21% 63.30%
Validation Recall 86.98% 97.29% 74.57%

Loss 0.01387934 0.346543908 1.169343233
Validation Loss 0.432095468 0.330930889 1.055114508
Time Efficiency 1140.18s 1960.02s 2101.76s

Fig. (10). Graphical representation of different models.
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Table 2. Classification accuracy comparison with other models.

Study Model Name Dataset Name Accuracy

[30] Proposed CNN Wheat Leaf images 96%
[31] Modified ResNet50 Wheat leaf images 98.44%
[32] Optimized Capsule Neural Network Tomato Leaf images 96.39%
[34] Harnessing Deep Learning (DL) Rice leaf images 99.94%
[35] TrioConvTomatoNet, a novel deep convolutional neural network architecture Tomato leaf images 99.39%
[36] Different CNN models Tomato leaf images 99.43%
[37] Proposed CNN Potato leaf images 98.28%

- Our Proposed Model Plant Leaf 97.57%

5. DISCUSSION
The comparison and performance of different models are

studied and compared with our proposed model. The different
datasets  are  used  for  comparison  using  different  models.
Some  authors  suggest  the  proposed  CNN  model  [28]  and
modified ResNe50 [29] model using wheat leaf images, which
show an accuracy of  96% and 98.44% respectively.  Table 2
shows the comparison with  our  proposed model.  The lesion
objects  are  detected  using  three  different  segmentation
models  such  as  LinkNet-34,  PSPNet,  and  SegNet.  The
LinkNet-34  detects  the  lesion  with  a  better  dice  coefficient
value  of  95%  and  a  Jaccard  index  of  93.2%.  Then,  the
LinkNet-34  fuses  with  other  classification  models  such  as
DenseNet-121, ResNet, and InceptionV3. The DenseNet-121
detects the lesion with an accuracy of 97.57%, which is better
than other models.

Based on the above table, it is obvious that using wheat
leaf  images,  the  proposed  models  detect  disease  with  an
accuracy of 98.44% and 96%. The optimized Capsule Neural
Network detects it with an accuracy of 96.39%. Our proposed
fused  model  LinkNet-34  with  three  different  classifiers,
DenseNet-121,  ResNet,  and  InceptionV3,  detects  the  best
accuracy  with  only  DenseNet-121,  which  shows  97.57%.
Dilated  convolution  layers  are  located  at  the  heart  of  the
network and are constructed using the LinkNet design. The
compute  and  memory  efficiency  of  Linknet  architecture  is
high. Dilation convolution is an effective technique that can
increase  feature  point  receptive  fields  without  lowering
feature  map  resolution.

CONCLUSION
This study suggests a model that consists of two transfer

learning phases. Moreover, to identify and categorize lesion
items, the segmentation model and classifier are connected.
In  addition  to  36  different  plant  leaf  diseases,  it  can
categorize  the  entire  instance.  The  first  results  showed  a
significant  improvement  over  the  present  crop  disease
classification  systems,  with  97.57%  classification  accuracy.
Even though our approaches, which combine a fusion model
and transfer learning, may seem more difficult to use and less
accurate than other approaches now in use. Increased model
epochs and training inputs will  improve the accuracy of the
suggested  system.  In  addition,  the  structure  provides  early
identification, fast processing, reduced parameters, and fewer
epochs.  Furthermore,  to  find  lesions,  a  total  of  50  epochs
were  examined.  These  advantages  allow  this  structure  to
function  in  a  concurrent  environment.  The  proposed  model
can be implemented in any crop disease for identification and
detection. Furthermore, drones are used to capture images of

crops or woodlands below the surface to create an accurate
and  reasonably  priced  dataset.  Furthermore,  because  of  its
faster  processing  speed,  the  suggested  system  is  a  great
choice for drone installation to provide real-time crop disease
detection.
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