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Abstract:

Background:

Hydroponic system has spread across Europe, but its use in developing countries is limited. Hydroponics may represent the industrial version of
farming.  It  is  established  within  buildings;  it  depends  on  automation,  can  go  vertically,  and  has  better  use  of  land  resources.  However,  the
feasibility of hydroponic farms is hindered by the start-up cost and may be improved through the proper scheduling of the harvest to be in the
optimal duration to take advantage of price seasonality and traditional farming production fluctuations.

Methods:

To improve the feasibility of hydroponic farms, this work develops a new operation research model that includes sales price variations, volume and
productivity of plants, space limitations, electrical installation, solar panels, etc. This model aims to address the most important questions that
farmers face, that is, what, when and how much to plant. Certain assumptions are made, such as reusable packaging, solar panels, and limiting the
plantation to selected popular crops in Jordan that can be easily marketed. The model is applied to a farm of size equal to 500 m2 in area and 4000
m3 in volume.

Results:

The main result of this work is the valuable figure that shows the plantation schedule. It shows the timely plantation (how much and when) for each
type of the selected plants. Further analysis is performed regarding the profit and total plant volume as compared to the total volume of the farm. It
also evaluates actual production versus target production.

Conclusion:

This work evaluates the expected profit of the selected hydroponic farm to be 17,778 JD compared to an average of 1000 JD from traditional
farming of land with the same square meters.
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1. INTRODUCTION

The  feasibility  of  hydroponic  systems  in  third-world
countries  is  questionable  due  to  competition  with  low-cost
traditional  farming.  Traditional  farming  is  characterized  by
relatively  low start-up costs  and production costs,  as  well  as
relatively  low sales  prices.  However,  the  production  and  the
sales  price  of  traditional  farming  are  characterized  by
fluctuation  and  seasonality.  Seasonality  production  of
traditional farming results in large quantities of the same crop
sent to the market at relatively the same time, leading to lower
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sales prices. Traditional farming also suffers from the need to
use an extensive amount of land and the need for a relatively
large  volume  of  water  for  irrigation.  Conveniently  locating
traditional  farms  near  cheap  sources  of  water  may  distance
them  from  consumers;  thus,  more  transportation  cost  is
incurred. High transportation cost forces farmers to harvest a
large  amount  of  crops  to  justify  the  transportation  cost.  The
high amount of exhibited products in the market and the low
shelf  life  of  these  products  lead  to  lower  sales  prices.
Hydroponic has an extensively lower need for irrigation water
and thus may be conveniently located near the consumers. The
lower transportation cost may reduce the need to harvest except
what the consumers order, thus taking advantage of the higher
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sale price.

On  the  other  hand,  a  hydroponics  system  suffers  from
higher costs of energy, installation, and nutrients while having
the advantage of the closeness to customers, level production
across the years, lower need for water than traditional farming,
the  ability  for  vertical  build-up  (use  of  3D  space),  and  the
successful integration of solar panels. Hydroponics has lower
viability if established in the same spots as traditional farming,
if they harvest in the same seasons as traditional farming, or if
they do not include solar panels or other energy-saving systems
to reduce energy costs.

Closed-type  (indoor)  urban  agriculture  may  be  the  most
viable  form  for  hydroponics  in  third-world  countries.  Urban
areas comprise half of the world's population and are expected
to  rise  to  more  than  70%  by  2050  [1].  The  rise  of  the
population in urban areas makes it more important to promote
urban agriculture (UA), which is efficient in terms of water and
nutrients [2].  Urban agriculture (UA) has the advantage over
traditional  farming  due  to  the  reduction  of  long-distance
transportation costs [3, 4]. UA can also have the advantage of
using  city  wastes  and  the  advantage  of  improved  energy
efficiency by using buildings and rooftops [5 - 7]. Moreover,
UA can use solar panels to supply the plants with the necessary
lighting for their growth, which can affect the economics and
the feasibility of the farms. In urban areas, more cities want to
develop sustainable and local food systems by integrating local
UA. UA can assume a diversity of forms, such as community
gardens,  allotments,  guerrilla  gardening,  rooftop  gardens,
greenhouses, and aquaponics [8]. In this context, commercial
micro-farms are raising interest because their small scale seems
particularly convenient in urban areas with restricted access to
land [9].

Crop planning is concerned with the selection of crops and
the assignment of land area (both land location and land size)
for maximizing profit while including several factors, such as
economic,  biological,  physical,  social,  weather,  markets,  and
costs  through  the  use  of  budgeting  or/and  mathematical
programming [10]. In modern industries like farms, scheduling
can  be  used  as  a  synonym  for  planning,  as  this  is  the  more
common name in the industry. Planning is usually associated
with quantifying the amount of resources needed to fulfill the
anticipated  demand,  while  scheduling  allocates  the  planned
resources to the production in a timely manner to deliver the
ordered  products  to  the  customer  at  the  proper  time  without
delay.  In  that  respect,  allocating  areas  to  crops  is  similar  to
allocating machines to products. While planning can be used to
quantify  the  total  area  needed,  the  total  number  of  machines
needed, etc., in an aggregate manner.

Spatial  land decisions were the subject of many research
works, which included single and multi-objective optimization
and other  techniques [11 -  13].  Land use management in the
context of crop planning has also been the subject of extensive
early  research,  for  example,  in  the  context  of  spatial
distribution and resource allocation [14 - 20]. The same crop
planning  problem  may  be  formulated  as  goal  programming.
Goal programming is a special multi-objective formulation that
may include profit, water limitations, market limitations, etc.,
which, in turn, are summed up to one figure after multiplying

each  separate  objective  by  a  suitable  weight  to  reflect  its
importance  [21].  The  crop  planning  problem  may  also  be
formulated  to  include  the  crop  succession  requirements  to
determine the best  sequence [22].  Crop rotation may also be
included in the formulation [23]. Crop planning or scheduling
may  be  formulated  and  solved  to  include  sustainability  and
profitability  to  maximize  production  volume  or  revenues  by
determining the best division of various heterogeneous pieces
of land under known demands [24]. Moreover, it can be used to
schedule the best planting dates and harvest dates for specific
plants  [25].  Some  crop  planning  formulations  seek  maximal
profit while having a limited amount of water and crop seeds
[26,  27].  It  may  also  consider  the  existing  groundwater
irrigation system [28]. Other studies attempted to minimize the
total  irrigation  water  and  maximize  the  net  income  from
farming  and  the  total  agricultural  output  [29].  The  crop
planning  formulation  may  also  determine  the  crop  rotation
(specific  crop  patterns  in  consecutive  planning  periods)  by
maximizing  the  profit  and  considering  hard  constraints  for
environmental  impact  with  no  limitations  of  irrigation  water
[30].  Other  formulations  attempt  to  optimize  both  crop-
planning and zoning through the integration of the Delineation
of  Rectangular  Management  Zones  (DRMZ)  with  the  Crop
Planning  Problem  (CPP)  in  precision  agriculture.  The  first
problem  consists  of  partitioning  the  agricultural  fields  into
chemical and physical management zones satisfying a specific
homogeneity  level  considering  the  soil  properties.  These
partitions are commonly used to improve agricultural practices,
such  as  fertilization,  irrigation,  pest  control,  etc.  The  second
problem considers the management zones to determine the best
crop  for  each  plot  maximizing  the  profit  [31].  Other  models
attempted the minimization of waste generated by the use of
resources  necessary  for  the  task  of  crop  maintenance  in  a
similar manner to Lean Manufacturing (LM), which includes
labor, use of machinery, and operations in time windows that
preserve the quality of harvest [32].

Operations  research  or/and  optimization  have  been  used
within  hydroponic  context,  to  alter  the  cultivation  factors  to
optimize the biomass production [33], alter ammonium/nitrate
and  potassium  in  nutrient  solution  to  optimize  bulb  fresh
weight, bulb dry weight, and whole-plant dry weight [34], alter
component  ratio  (hydroponic  tank  volume  to  rearing  tank
volume) to optimize fish growth, vegetable yield, and nutrient
removal [35], retrofit a light industrial building with a hybrid
renewable  energy-assisted  hydroponics  farming  to  optimize
crop  production  [36],  alter  commonly  known  hydroponic
parameters, such as hours of illumination, photosynthetic flux
density,  temperature  of  nutrients,  concentration  of  nutrients,
etc., to optimize plant growth [37], the modification of spectral
distribution  and  light  intensity  (i.e.,  light  intensity,  duration,
and spectral distribution) for maximum cost effectiveness and
reducing carbon footprint [38], alter the anion composition of
the nutrient solution by using an experimental design with the
independent variables, NO3

-, H2PO4
-, SO4

-2 and Cl-, to optimize
two  response  variables:  number  of  leaves  and  forcing
efficiency  [39],  apply  reinforcement  learning,  artificial
intelligence,  and  Internet  of  Things  (IoT)  to  optimize  the
amount  of  water  for  irrigation  [40],  alter  stocking  density  to
optimize length and weight gain, nitro blue tetrazolium (NBT)
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activity  and  catalase  activity,  glucose,  and  cortisol  level  in
aquaponics  system  [41],  and  to  use  different  fertigation
management  practices  to  explore  the  impacts  of  agronomic
performance and environmental life cycle [2].

Farm crop  planning  is  affected  by  fluctuations  in  prices,
which represent a tangible risk for farms' feasibility [42, 43].
Crop prices  are  affected by farm production and farm inputs
[44]. The environment has a definite influence on the quality
and quantity of the harvest in traditional farming. Open non-
controlled farms may also suffer from weeds, pests, etc., which
may lead to more risk for the harvest [45 - 50]. In this respect,
closed indoor urban farms are more immune to these risks and
may lead to more stable production and a reliable supply chain.
However, these farms use more technology and have high start-
up investment costs. Also, closed hydroponic farms have less
need  for  water,  which  is  nearly  3%  of  what  is  used  for
traditional farming. Also, closed indoor hydroponic farms may
be implemented vertically, and this is extremely important as it
has  higher  production  per  square  meter.  They  also  have  less
risk  for  weeds,  pests,  etc.  problems.  Properly  designed
hydroponic farms are usually automated and are characterized
as  lower  labor  intensive  than  traditional  farming.  However,
some  tasks  that  cannot  be  automated  will  still  be  done
manually. Automation and control can be used for monitoring,
irrigation, nutrient addition, concentration control, and weather
management tasks. Increased automation, powered irrigation,
and  the  lighting  system  will  require  more  energy;  therefore,
installing  a  suitable  PV  system  will  reduce  the  energy  cost
significantly. This is especially true for countries like Jordan,
which gets excessive sunlight.

In this work, we consider the optimization of vertical farms
by adding a new concept, namely the 3d or volume perspective.
Mostly,  if  not  all,  previous  research  work  was  devoted  to
allocating areas. This work may have the novelty of allocating
volume  to  plants,  not  surface  areas.  This  work  attempts  to
optimize the crop scheduling or crop planning problem in 3D,
which  is  more  suitable  for  vertical  farming.  This  work  also
includes the variability of volume and price all year round. It
takes  into  consideration  the  different  costs,  including  labor,
seeds,  installation,  etc.,  in  one  number.  An  increase  in  the
volume consumed by the plant with time due to growth is also
considered. The model assumes energy cost to be included in
the initial investment through installing a sufficient PV system.
This  research  work  shows  the  variation  in  the  prices  for
different  types  of  crops  over  the  year  and  suggests  an
optimization  model  for  the  profitability  of  the  hydroponic
system. The decision variable is important to farmers, that is:
“what to plant and how much to plant year-round” to achieve
the highest profit. The model assumes that the selected farm is
in  an  urban  area  with  trivial  transportation  costs.  It  also
assumes  that  the  system  is  already  built  with  enough  solar
panels to exclude energy costs. Depreciation costs for the built

system and maintenance costs are also included.

2. METHODOLOGY

Fig. (1) shows the methodology devised for this work. It
starts  with  a  model  formulation  which  includes  limitations,
setting  objectives,  general  costing,  and  the  type  of  plants
included in this work. The next step is data collection, which
explores the installation price, operational costs, and possible
selling  prices  for  the  produce  and  the  volume taken  by  each
type of plant on a weekly basis. Model construction includes
two  main  steps,  which  are  objective  function  setting  and
constraints  settings,  which  are  then  used  to  develop  the
operations  research  model.  The  model  is  then  solved  in
MATLAB to answer the most important questions in relation
to farming, which is what and when to plant to attain feasible
and profitable production. The results are further analyzed and
validated.

2.1. Volume Allocation

Mechanical  engineering  design  can  be  used  to  develop
flexibility in the shape of the plant containers. Fig. (2) shows
some methodologies, such as flexible shelves design, where the
size  and  the  height  of  the  shelve  can  be  modified  to
accommodate more plants when they are small by using lower
shelves when plants are just planted and germinated while the
shelves  can  be  moved  up  to  accommodate  plants  when  they
have grown. Also, Fig. (2) shows another popular hydroponics
system in pipes, where extension pipe units can be added as the
plant grows to accommodate the larger size of the plant.

Fig. (2) illustrates the allocated volume of the plant, which
is  an  imaginary  cuboid  drawn  around  the  plant.  The  plant
volume allocated should be modified to include its portion of
the  service  lane.  The  volume  of  the  plant  should  include  its
own volume in addition to the volume of the service, such as
lighting, irrigation, and service lanes.

3. MODEL DEVELOPMENT

In farming, the objective will be to maximize profit. This
maximization  will  ensure  the  viability  and  continuity  of  the
project. The most important decision variable for the farmers is
what to plant and how much of each type. Due to seasonality,
the  choices  are  limited  for  traditional  farming.  However,
considering indoor farming with controlled conditions, seasons
are not  there.  There are fewer or  even no season limitations.
Therefore,  the  decision  variable  will  be  what  to  plant  and
when. Producing in and out of season when the prices are high
can  be  the  economic  edge,  where  hydroponic  systems  can
flourish and prosper. This is extremely important considering
the huge price variability for the different products. The price
may  double  across  the  year.  It  is  difficult  for  traditional
farming  to  take  advantage  of  these  price  fluctuations,  but
hydroponics  can.
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Fig. (1). Methodology.

Fig. (2). Some common hydroponic systems with flexible heights that can be changed as the plant grows.
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Considering the  optimization  of  the  decision  variable,  in
this  model,  we  selected  a  typical  urban  farm  to  choose  the
number  of  plants  to  be  planted  in  the  system.  Weeks  were
selected as the variable decision point for both cultivation and
plantation. Thus, they can be defined as:

XTi:Number  of  Tomato/  new tomato  plants  placed  in  the
system in Week i

VTij: Volume occupied by tomato plant placed in the system
in week i, in week

PTij: Production in Kg of tomato plant placed in the system
i in week j

STij: Sales prices of tomato plant produce for plant placed
in the system in week i, in week j

CTij: Cost weekly of tomato plant produce for plant placed
in the system in week i, in week

DTj: Anticipated demand for tomato plants produce in kg
in week j

The  same  can  be  considered  for  other  plants:  (XCaij,
PCaij,SCaij,DCaj) are for cauliflower, (XSij,PSij,SSij,DSj) are
for sweet  pepper,  (XOij,POij,SOij,DOj) are for  plant  onions,
(XLij,PLij,SLij,DLj) are for lettuce, (XPij,PPij, SPij, DPj) are
for  plantpotato,  (XCuij,PCuij,SCuij,DCuj)  are  for  plant
cucumber,  (XSTij,PSTij,SSTij,DSTj)  are  for  plants  straw-
berries,  (XChij,PChij,SChij,DChj)  are  for  plant  chili  pepper,
and (XGij,PGij,SGij,DGj) are for plant garlic.

Let us define:

Xij = [ XT ;XCa;XS;XO;XL;XP;XCu;XST;XCh;XG]

Vij = [ VT ;VCa;VS;VO;VL;VP;VCu;VST;VCh;VG]

Pij = [ PT ;PCa;PS;PO;PL;PP;PCu;PST;PCh;PG]

Sij = [ ST ;SCa;SS;SO;SL;SP;SCu;SST;SCh;SG]

Cij = [ CT ;CCa;CS;CO;CL;CP;CCu;CST;CCh;CG]

The profitability per plant is defined as:

(1)

The model, in this case, can be stated as:

Subject to

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

4.  MODEL  CONSTRUCTION  AND  DATA  COLLEC-
TION

4.1. Objective Function

The income of  hydroponics  for  the current  model  comes
from the sales of vegetables. The farm under consideration is
an urban farm within a city, and thus we can exclude multiple
aspects that  are usual costs for traditional farming, including
major  transportation  costs,  lost  production  due  to  insects  or
pests, wasted plants prior to sale, disposable packaging, supply
chain  costs  due  to  direct  sales  to  customers,  etc.  The
assumption  of  zero  or  minimal  waste  is  due  to  minimum
handling  and  minimum  transportation.  The  production  per
plant was obtained from previous studies [47 - 49] for all of the
plants  under  consideration  and  is  shown  in  Fig.  (3).  The
objective  function  includes  three  variables,  sales,  production
per plant, and cost. This kind of information is obtained from
experts in the field and the Jordanian department of statistics
[50].  For  example,  the  tomato  plant  can  produce  in  the  11th

week after  plantation,  and it  provides an average of  2.33 Kg
each week for three weeks in a row. Fig. (3) illustrates this for
the  10  plants  of  interest.  Some  plants  have  continued
production for many weeks, such as chili pepper, while others
produce once, such as garlic, onions, lettuce, and cauliflower.
Fig. (3) illustrates that the plantation in the system is made in
week zero if, in any case, the placement in the system is done
in week i the whole curve is shifted to the right with weeks. For
example, if a tomato plant is placed in the system in week 3, it

𝑓𝑖 = ∑ 𝑃𝑖𝑗 ∗ 𝑆𝑖𝑗 − 𝐶𝑖𝑗
52
𝑗=1

𝑀𝑎𝑥  𝑓′ ∗ 𝑋 

     𝑉 ∗ 𝑋 ≤    4000

The total Volume Equation 

     𝑃 ∗ 𝑋  ≤   2000

Weekly production is less than 2000 

     𝑃 ∗ 𝑋  ≥    50

Must produce at least 50 Kg on a weekly basis 

     𝑃𝑇 ∗ 𝑋𝑇 ≤ 𝐷𝑇
Must have tomato production less than demand

     𝑃𝐶𝑎 ∗ 𝑋𝐶𝑎 ≤ 𝐷𝐶𝑎

Must have cauliflower production less than demand

𝑃𝑆 ∗ 𝑋𝑆 ≤ 𝐷𝑆

Must have sweet pepper production less than demand

     𝑃𝑂 ∗ 𝑋𝑂 ≤ 𝐷𝑂

Must have onion production less than demand

𝑃𝐿 ∗ 𝑋𝐿 ≤ 𝐷𝐿

Must have lettuce production less than demand

𝑃𝑃 ∗ 𝑋𝑃 ≤ 𝐷𝑃

Must have potato production less than demand

     𝑃𝐶𝑢 ∗ 𝑋𝐶𝑢 ≤ 𝐷𝐶𝑢

Must have cucumber production less than demand

𝑃𝑆𝑡 ∗ 𝑋𝑆𝑡 ≤ 𝐷𝑆𝑡

Must have strawberry production less than demand

     𝑃𝐶ℎ ∗ 𝑋𝐶ℎ ≤ 𝐷𝐶ℎ

Must have chili pepper production  less than demand

     𝑃𝐺 ∗ 𝑋𝐺 ≤ 𝐷𝐺

Must have garlic production less than demand

     𝑋𝑖 ≥ 0 

       𝑋𝑖    𝑖𝑛𝑡𝑒𝑔𝑒𝑟  
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will start to produce in week 14 (11 weeks from the zero-week
plantation plus 3, which is the start of the plantation).

To  obtain  weekly  pricing,  we  used  certain  officially
selected references [51, 52]. Fig. (4) shows the seasonality for
the different plants' prices at different weeks of the year. It is

not unusual for the prices to double or even triple over a year.
The prices are the lowest during high seasonal production. The
highest  pricing  is  noticed  for  out-of-season  or  in  case  of  an
event that resulted in damage to the traditional farming crops,
especially due to uncontrolled weather conditions, such as very
high or very low temperatures.

Fig. (3). The productivity per plant.

Fig. (4). Prices of produce in 0.001JD/Kg for different farming products for the whole year. (Data department of statistics).
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Fig. (5). Illustration of the included hydroponic costs.

The last element for the objective function is the costing.
Fig.  (5)  shows  an  illustration  of  some  of  the  major  costs
incurred in hydroponics. The start-up or installation costs are
the initial cost to start the whole farm. This cost includes the
building,  prototyping,  rental,  solar  panels,  control,  A.C.
systems,  lighting and their  maintenance,  insulation,  pumping
systems, etc. The data for these fixed costs were collected with
the  help  of  experts  to  be  nearly  180,000  JD.  The  project  is
assumed to live for 25 years, 52 weeks per year. The weekly
cost is  equal to 138.4 JD/ week. This cost is  allocated to the
different  plants  based  on  their  volume percentage  relative  to
the total volume.

For this work, we have selected a hypothetical 4000 m3 (25
m  ×  20  m  ×  8  m)  hydroponic  farm  assumed  to  run  for  52
weeks, that is, 52 *4000 cubic meters * week. Although this is
the total volume that can be used, including service lanes, the
actually used volume based on our analysis is the sum of the
total volume used, which is later evaluated in the paper to be
1.1245 *105  cubic meters*week.  A tomato plant  uses 7.2409
cubic meters*week, nearly an average of 0.5570 cubic meters
for 13 weeks, including service lanes. It can be calculated as:

(17)

The  other  costs  were  allocated  to  the  plants,  including
labor, in the same manner. The nutrition cost was major. The
consumption  per  plant  and  the  cost  of  these  nutrients  were

obtained from agriculture experts.

The  objective  function,  in  this  case,  is  just  the
multiplication of the production by the selling price minus the
incurred  costs  (Equation  1).  It  can  be  observed  that  the
profitability of the plants is variable because of the variability
of the sales price.  The cost  is  assumed to have a fixed value
while  the  selling  price  is  variable,  and  thus  it  is  better  to
produce  at  weeks  or  periods  when  the  market  offers  higher
prices.

4.2. Volume and Production Constraints

Constraints  are  shown  in  equations  2-16.  Equation  2  is
related to volume. Traditional outdoor farming is limited by the
land  size  that  is  measured  by  square  meters.  Things  are
different in a properly designed hydroponic system; we can go
vertically.  The  land  is  not  the  major  issue;  instead,  we  are
limited by the volume. As discussed earlier, we evaluated the
volume taken by the different plantations and placed that in the
matrix (V). Vij is the volume taken by plant i in week j. Xi is
the number of plants I placed in the system. XiVij is the weekly
used volume for the 52 weeks; this value should be less than
4000  m3  (For  this  work,  we  have  focused  on  constructing  a
4000  m3  (25  m  ×  20  m  ×  8  m)  hydroponic  farm).  Fig.  (6)
shows the volume consumed per plant starting from the day it
is placed in the system.

Equations  3  and  4  are  related  to  production.  Matrix  P
shows the weekly production of the plant in week J. X*P, in
this case, represents the weekly production, which is assumed
to be greater than a designated value of 50 Kg/week and less
than the 2000 Kg/week. The 50 Kg ensures that there are sales
and money in the system. However, 2000 Kg is the maximum
that the farm should produce.

Table 1 shows the required maximum production for each
type of plant based on local marketing assumptions. This may
vary from farm to farm. Therefore, these numbers are specific
for this considered hypothetical farm. Different farms will have
different target values.

Plant portion for installation cost 

=   ӡ𝑉𝑜𝑙𝑢𝑚𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑝𝑙𝑎𝑛𝑡

𝑇𝑜𝑡𝑎𝑙 𝑢𝑠𝑒𝑑 𝑣𝑜𝑙𝑢𝑚𝑒 𝑏𝑦 𝑎𝑙𝑙 𝑝𝑙𝑎𝑛𝑡𝑠
∗ 𝑡𝑜𝑡𝑎𝑙 𝑤𝑒𝑒𝑘𝑙𝑦 𝑐𝑜𝑠𝑡

                             

   For the tomato plant

 
=

7.4209

1.1245∗105 ∗ 138.4 = 0.009133𝐽𝐷 = 9.133 𝑖𝑛 0.001𝐽𝐷 

Distribution of the 13 weeks of plantation 

=
9.133

13
= 0.70257 𝑖𝑛 0.001𝐽𝐷/𝑊𝑒𝑒𝑘 
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Table 1. Maximum allowed weekly production (targets) for each type of plant included in the system.

- Demand (kg)
Tomato 479

Cauliflower 147
Sweet Pepper 200

Lettuce 100
Potato 432

Cucumber 315
Onion 257

Strawberry 200
Chilli 70
Garlic 50
Sum 2250

Table 2. The integer programming algorithm by Wallace [53].

Input: Primal Feasible Point x
Repeat
Loop For each integer variable xj
1: For xj non-fractional calculate (U_B,L_B, Threshold=1)
If cj >0 and L_B=1 or cj < 0 and U_B =1
Then Update xj and slack s^
2:Else for fractional xj calculate (UB,LB, threshold = ɛ)
If ZI(xj +UB)=ZI(xj-LB) and ZI(xj+UB) <ZI(xj)
Then Update xj to improve objective
Update slacks s^
Else If ZI(xj+UB) < ZI(xj-LB) and ZI(xj +UB) <ZI(xj)
Then set xj=xj+2UB and update s
Else If ZI(xj-LB) < ZI(xj+UB) and ZI(xj -LB) <ZI(xj)
Then set xj=xj-LB update s^
Until no more updates are found

Fig. (6). Plants volume.
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Fig. (7). Targets weekly production in Kg.

Fig. (8). Optimal new plants in the system.

The actual weekly target varies according to the price. The
demand is assumed to shrink at higher prices according to the
following equation:

(18)

Fig. (7) shows the finalized target production.

5. MIXED INTEGER SOLUTION

Table 2 shows the Wallace [13] algorithm solution for the
mixed integer problem. A full illustration of the solution is not
included in this work. Instead, the solution to the problem is
obtained through the MATLAB function, which may use the
Wallace algorithm as a reference.

The  MATLAB  function  to  be  used  is  intlinprog  (f,A,b).
This is suitable for integer programming problems subject to
constraints.

𝑇𝑎𝑟𝑔𝑒𝑡 𝑖𝑛 𝑊𝑒𝑒𝑘 𝑗 =
𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑃𝑟𝑖𝑐𝑒

𝑃𝑟𝑖𝑐𝑒 𝑖𝑛 𝑊𝑒𝑒𝑘 𝑗
∗ 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑇𝑎𝑟𝑔𝑒𝑡   
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[X,FVAL,EXITFLAG,OUTPUT]  =  intlinprog(f,A,b)
which  corresponds  to

min f'*x over x

subject to: A*x <= b

x(i) integer, where i is in the index

The code for this function initiates the f, A, and b functions
according to the model developed previously.

6. RESULTS AND DISCUSSION

The MATLAB code is run to find the optimal 17,778 JD
yearly profit. This is achieved based on selecting the solution
of the decision variable X, as shown in Fig. (8). As can be seen
in the figure, the number of plants placed in the system varies
from week to week. Adhering to these numbers might increase
the viability of hydroponic farms in Jordan. As expected, the

lettuce proved to have a good portion for the production, which
to  a  maximum  of  nearly  900  plants  weekly  in  some  cases.
Also,  it  shows  that  some  plants  may  not  compete  in  a
hydroponic  system  in  terms  of  feasibility,  such  as  onions.
These plants are not optimal for hydroponics in Jordan. Garlic
should be planted in specific weeks only.

Fig.  (9)  shows  the  weekly  volume  used  by  the  plants.
Although the current farm has 4000 cubic meters of space for
plants,  not  all  of  that  volume  should  be  used  based  on
optimization results. Fig. (10) shows the total kg production on
a weekly base. Although the farm can handle up to 2000 Kg
per  week,  the  maximum  suggested  volume  by  the  model  is
1630  Kg,  and  it  goes  to  as  low  as  1275  Kg  per  week.  This
limitation  is  affected  by  both  the  market  prices  and  target
production. Relaxing the target constraints will result in more
plantation and an increase in the volume used.

Fig. (9). Volume consumed on a weekly basis.

Fig. (10). Optimal production.
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Fig. (11). Optimal production versus targets.

Fig. (11) shows the actual and target production for each
plant.  Most  of  the  targets  are  met  due  to  feasibility.  Some
plants  are  not  suggested  for  plantation,  such  as  onions.  The
same can be considered for sweet pepper, strawberry, chili, and
garlic in some weeks.

CONCLUSION

This  work  is  devoted  to  vertical  hydroponic  system
optimization  that  includes  sales  price  variations,  the
productivity of plants, and space limitations. The decision or
input  variable  is  how  much,  what,  and  when  to  plant.  An
operation research model was developed that included a profit
objective  function  and  constraints.  The  constraints  included
maximum volume and target production for each type of plant.
The target production varies according to the price. It can be
concluded  that  based  on  a  square  meter  reference,  the
optimized hydroponic farms can be much more profitable than
traditional  farming.  Adding  the  target  production  constraint
may  result  in  better  sales  but  less  utilization  of  the  total
possible  volume.  Some  plants  may  not  be  profitable  in
hydroponic  farming,  such  as  onions,  while  others  are
profitable. The results of this work can be scaled down or up
according  to  the  size  of  the  farms  without  much  change  in
profitability per square meter, adding to the importance of the
results of this work.
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