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Abstract:

Powdery mildew is one of the most noticeable and harmful wheat diseases in countries with temperate climates and sufficient rainfall. The most
efficient, economical, and environmentally friendly means to control powdery mildew is the growing of genetically resistant wheat cultivars. The
genetic resistance of wheat is quickly overcome due to the evolution of the avirulence genes of the pathogen. The problem of enriching the genetic
pool of wheat with new effective resistance genes is relevant. The objective of the work is to show that the basis of the organization of the genetic
protection of wheat from powdery mildew cannot be related to the simple expansion of the wheat genetic pool due to new resistance genes. The
gene transfer should be preceded by the study of the molecular nature of the resistance gene products. The work presented information about
resistance types in wheat against powdery mildew and the molecular nature of Pm genes’ products. They are NLR-immune receptors, tandem
kinase proteins, receptor-like kinases, transporters, plant-specific proteins, and mitogen activated kinases. NLR, in interaction with the pathogen
effectors, confers highly specific resistance; all the rest provide resistance of a wide spectrum. Characteristics of pathogen gene products are
provided, and a model of interaction between Pm and AvrPm gene products is described. A certain number of Pm genes are present in the current
genetic  pool  of  common  wheat.  The  effectiveness  of  some  of  the  most  common  genes  has  already  been  overcome  by  the  pathogen.  This
necessitates the renewal of resistance genes in wheat. Prospects for the improvement of wheat genetic resistance to powdery mildew are provided.
The prospective direction of research for providing effective long-term wheat genetic resistance to the biotrophic pathogen Blumeria is molecular
genetic studies of wheat plants and pathogen races. A clear understanding of the molecular nature of the plant protein conferring resistance and its
role in the development of the molecular pattern of plant protection against the pathogen is necessary to assess the prospects of any resistance gene
for transfer to the genetic pool of wheat in relation to its ability to confer effective and long-lasting powdery mildew resistance.
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1. INTRODUCTION

Powdery mildew is one of the most noticeable and harmful
wheat  diseases  in  countries  with  temperate  climates  and
sufficient rainfall  [1].  The disease begins to develop early in
the  vegetation  season,  affecting  all  plant’s  parts,  and  is
amplified  in  favorable  agronomic  conditions  [2].  Yield  loss
caused by powdery mildew could be evaluated as 5–40%, and
in cases of early disease development [3 - 5], grain quality is
decreased [6]. The disease in wheat is caused by the biotrophic
fungal  pathogen  Blumeria  graminis  (DC)  E.O.  Speer  f.  sp.
tritici  Em.  Marchal  (Bgt)  (syn.  Erysiphe  graminis  DC  f.  sp.
tritici Marchal) (Bgt), which is an obligate parasite [7].

The  most  efficient,  economical,  and  environmentally
friendly means to control  powdery mildew is  the growing of
genetically resistant wheat cultivars [8]. Until recently, in com-
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mon  wheat  (Trtiticum  aestivum  L.),  durum  wheat  (T.  durum
Desf.) and their relatives from the subtribe Triticinae at least 90
genes (alleles) in about 50 loci have been identified as genes
that  prevent  the  development  of  powdery  mildew  spores  on
wheat  leaves,  thus  conferring  resistance  of  the  plant  to  this
pathogen [9, 10].

The resistance of wheat plants to powdery mildew can be
horizontal, which is formed as a result of the deployment of a
molecular  pattern  of  the  interaction  of  pathogen  and  host
molecules  as  a  result  of  the  expression  of  several  genes
involved in ontogenetic processes [11 - 17]. The reaction is not
specific  to  isolate  the  pathogen  and  sometimes  the  disease.
Resistance can be vertical when developed in response to the
interaction of the products of a particular Pm wheat resistance
gene  and  the  corresponding  AvrPm  pathogen  gene.  Such
resistance  is  highly  specific,  and  the  vast  majority  of  wheat
genes identified today in its gene pool provide it. Products of
genes  Pm  and  AvrPm  are  components  of  the  gene-for-gene
system [18].
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In  genotypes  of  modern  commercial  wheat  cultivars,
powdery mildew resistance is conferred by a limited variety of
resistance  genes,  and  almost  all  these  genes  confer  vertical
race-specific resistance.  These include genes Pm2,  Pm3a,b,f,
Pm4a, Pm30, inherent to the common wheat genetic pool, and
several introgressed genes: Pm6, Pm8, Pm13, Pm21 [19, 20]. It
has  been  reported  that  most  of  the  indicated  genes  were
overcome  by  the  pathogen  because  new  races  of  pathogen
appeared  with  virulence  genes,  whose  products  were  not
recognized by the products of resistance genes [20 - 23]. This
has been stated for widely grown cultivars in many regions of
the world. That is the reason for the need for constant renewal
of  genes  for  resistance  to  powdery  mildew  in  the  cultivated
wheat gene pool.

It  is  believed  that  the  most  prospective  sources  of  new
resistance genes are wheat wild relatives. They could provide
genes for nonhost resistance, and these genes could be effective
for  a  long  time,  while  the  pathogen  evolves  new  avirulence
genes  on  the  background  of  positive  selection  of  virulent
mutants,  which  occurs  when  cultivars  contain  specific
resistance gene (genes) [19, 24 - 29]. However, gene introgre-
ssion is combined with the performance of a large amount of
work and lasts a long time. In order to be sure that the long and
hard work will not be in vain due to the rapid overcoming of
the  new  wheat  resistance  gene  by  a  virulent  mutation  of  a
pathogen gene from the gene-for-gene system, the optimal start
to  such  work  is  the  sequencing  of  the  resistance  gene  to
understand  what  resistance  it  provides.  If  vertical,  the
effectiveness  of  such  a  gene  is  not  likely  to  be  long-lasting
[24].  If  a  gene  provides  broad-spectrum  resistance,  the
effectiveness of such a gene in wheat genotypes can persist for
decades [19, 24].

Here, we provide an overview of the current understanding
of the possibilities of genetic improvement of wheat relative to
resistance to powdery mildew. The objective of the work is to
show that the basis of the organization of the genetic protection
of wheat from powdery mildew cannot be related to the simple
expansion  of  the  wheat  genetic  pool  due  to  new  resistance
genes. The gene transfer should be preceded by the study of the
molecular nature of the resistance gene products.

1.1. Resistance Types in Wheat

Powdery mildew resistance, similarly to resistance to other
pathogens,  is  firstly  classified  as  passive  and  active.  Passive
resistance is conferred by the physical surface barriers of the
plant.  This  type  of  resistance  prevents  the  penetration  of
pathogens  into  plant  cells  and  do  not  consider  here.  Active
resistance  depends  on  concrete  genes  and  is  realized  in  two
main ways: the development of pathogen-associated molecular
patterns  (PAMP)  triggers  resistance  in  which  pattern
recognition receptors (PRR) are involved. PRRs localize in the
plasma  membrane  and  recognize  conserved  pathogen
molecules. Although this resistance reaction is active, it is not
specific and develops in response to any pathogen. Such a class
of immunity is called “pattern-triggered immunity” (PTI) and
may  be  suppressed  by  host-adapted  pathogens  by  delivering
effector molecules inside host cells [30, 31]. A second line of
defense  is  an  active  specific  reaction  to  the  pathogen.  It
develops  through  the  action  of  intracellular  multidomain
receptors  carrying  a  stereotypical  nucleotide  binding  site
(NBS)  and  leucine-rich  repeat  (LRR).  Their  name  is  NLR
(nucleotide-binding  leucine-rich  repeat)  [32,  33].  They  are
known  as  immune  receptors  and  are  encoded  by  R-genes.
Contact  between  pathogen’s  elicitors  and  R  gene  products
directly  or  with  the  participation  of  certain  intermediate
molecules  gives  rise  to  the  development  of  ETI  –  effector
triggered immunity [34].

1.2. Pm Genes Products

Genes  that  provide  active  resistance  to  powdery  mildew
are called Pm  genes. Their products confer both specific and
not  specific  resistance.  Specific  resistance  is  conferred  by
NLR-receptors, not specific resistance is conferred by tandem
kinase  proteins,  receptor-like  kinases,  transporters  and  some
other proteins. The functions of proteins encoded by resistance
genes  have  been  clarified  after  sequencing  these  genes.
Currently,  nucleotide  sequences  of  more  than  300  plant
resistance genes are established [35, 36]. For wheat Pm genes,
sequencing began in 2003, and the number of sequenced genes
increases  every  year.  Currently,  13  Pm  genes  are  sequenced
(Table 1).

Table 1. List of Pm genes in the wheat gene pool.

Gene/Reference Chromosome Source of Gene Product of Gene/Reference
Pm1 a [37, 38] 7AL 1) NLR [39]
Pm1 b [40] T.monococcum No information
Pm1c [40] =Pm18 7AL 1) No information
Pm1d [40] 7AL T.spelta No information
Pm1e=Pm22 [41, 42] 7AL 1) No information
Pm2a,c [43] 5DS 1) NLR [44]
Pm2b [45] C-5DS Agropyron cristatum No information
Pm3 [46] 1AS 1) NLR [47]
Pm4a [48, 49] 2AL T.monococcum Functional kinase [36]
Pm4b [48, 49] 2AL T.carthlicum Functional kinase [36]
Pm4c=Pm23 [50] 2AL 1) No information
Pm4d [51] 2AL T.monococcum No information
Pm5 a2),b,d,e2) [37] 7BL T.dicoccum NLR [52]
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Gene/Reference Chromosome Source of Gene Product of Gene/Reference
Pm5c [37] 7BL T.sphaerococcum No information

Pm6 [53] 2ВL.2GL T.timopheevii
Several LRRs, a trans-membrane domain, and a Ser/Thr protein
kinase domain [54]

Pm7 [55] 4BL S.cereale No information

Pm8 [56, 57] 1BL.1RS S.cereale
Coiled-coil (CC), nucleotide-binding site ARC1 and ARC2
(NB-ARC) and leucine-rich-repeat (LRR) domain protein [58]

Pm92) [59] 7AL 1) No information
Pm10 [60] 1D 1) No information
Pm11 [61] 6BS 1) No information
Pm12 [62] 6BS6SS.6SL Ae. speltoides No information
Pm13 [55] T3BL.3BS-3S1 #1S Ae. longissima No information
Pm14 [63] 6B 1) No information
Pm15 [63] 7DS 1) No information
Pm16 [64] 4A T.dicoccoides No information
Pm17=Pm8 [65] T1AL.1R#2S S.cereale See Pm8
Pm18 [66] 7A 1) See Pm1c
Pm19 [67] 7D Ae.tauschii No information
Pm20 [68] T6BS.6R#2L S.cereale No information
Pm21 [69]=Pm31 [70] T6AL.6VS H.villosa serine and threonine protein kinase V, Stpk-V) [71]
Pm22= Pm1e See Pm1e
Pm23= Pm4c See Pm4c
Pm24а [72] 1DS 1) (Tandem Kinase Protein, TKP) [13]
Pm24b [73] 1DS 1) No information

Pm25 [74] 1A
Triticum monococcum subsp.
aegilopoides

No information

Pm262) [75] 2BS T.dicoccoides No information
Pm27 [76] 6B-6G T.timopheevii No information
Pm28 [77] 1B 1) No information
Pm29 [78] 7DL Ae.ovata No information
Pm30 [79] 5BS 1) No information
Pm31 [80]=Pm21 [70] 6VS/6AL H.villosa No information
Pm32 [81] 1BL.1SS Ae.speltoides No information
Pm33 [82] 2BL T.carthlicum No information
Pm34 [82] 5DL Ae.tauschii No information
Pm35 [83] 5DL Ae.tauschii No information
Pm36 [84] 5BL T.dicoccoides No information
Pm37 [85] 7AL T.timopheevii No information
Pm38 [86] 7DS 1) ABC transporter [16]
Pm39 [87] 1BL Ae.umbellulata No information
Pm40 [88] 7BS Th. intermedium CC-NBS-NBS-LRR [89]
Pm41 [90] 3BL T. dicoccoides Protein with domens СС-NBS-LRR (CNL) [91]
Pm422) [92] 2BS T. dicoccoides No information
Pm43 [93] 2DL Th. intermedium No information
Pm44 [94] 3A 1) No information
Pm45 [95] 6DS 1)

Pm46 [96] 5DS 1) Hexose transporter [17]
Pm47 [97] 7BS 1) No information
Pm48 [98] 5DS No information
Pm49 [99] 2BS T.dicoccum No information
Pm50 [100] 2AL T.dicoccum No information
Pm51 [101] 2BL Th. ponticum No information
Pm52 [102] 2BL 1) No information
Pm53 [94] 5BL Ae. speltoides No information
Pm54 [103] 6BL 1) No information

(Table 1) contd.....
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Gene/Reference Chromosome Source of Gene Product of Gene/Reference
Pm55 [104] 5VS.5DL D.villosum No information
Pm56 [105] T6RS.6AL S.cereale No information
Pm57 [106] T2BS. 2BL-2SS #1L Ae.searsii No information
Pm58 [107] 2DS Ae.tauschii No information
Pm59 [108] 7AL 1) No information
Pm60 [109] 7A T.urartu Proteins with domens NBS and LRR [110]
Pm612) [111] 4AL 1) No information
Pm62 [112] 2BS.2VL#5 D.villosum No information
Pm63 [108] 2BL 1) No information
Pm64 [113] 2BL T.dicoiccoides No information
Pm65 [114] 2AL 1) No information
Pm66 [25] T4SlS-4BL Ae.longissima No information
Pm67 [19] T1DL·1VS#5 D.villosum No information
Pm68 [115] 2BS T.turtgidum No information
Note: 1) Gene is attributable to T. aestivum2) Recessive gene 3)Table 1 contains only genes with permanent names mapped to specific chromosomes using traditional
methods of linkage mapping and physical mapping using bins. Genes mapped using the modern method of genome-wide association studies (GWAS), in our opinion,
should be tested if they are alleles of known mapped genes, and only after this testing, these genes could get the permanent name of a new gene or a new allele, or the allele
of the previously mapped Pm gene.

1.3. NLR-receptors

Most of the sequenced resistance genes code NLR, which
provide vertical resistance to the pathogen [35, 116]. They are
classified  into  two  main  types  depending  on  the  structure  of
their N-terminal domain (NBS): TIR (Toll and IL-1 receptors)
and non-TIR. The majority of non-TIR NLRs have СС (coiled-
coil)  domain  on  their  N-terminus.  It  was  demonstrated  that
dicot plants have both TIR and non-TIR NLR, while monocot
plants, including wheat, have only non-TIR NLR [116, 117].
When  NLR  specifically  recognizes  pathogen’s  effectors
through the LRR domain, structural changes occur in the NB-
ARC  domain  which  is  a  functional  ATPase.  The  binding  of
nucleotides to the NBS regulates the activity of the R protein.
Activated  R  protein  conducts  a  signal  for  the  subsequent
resistance  development.  Usually,  NLR-induced  resistance  is
associated with hypersensitive response – local cell death in the
site of pathogen penetration in order to prevent the spread of
biotrophic  pathogens  such  as  Blumeria  graminis  f.sp.  tritici
[109, 116]. In wheat, NLR-receptors are encoded by the genes
Pm1, Pm2, Pm3, Pm5, Pm8, Pm40, and Pm60.

1.4. TKP (Tandem Kinase Orotein)

In wheat, the Pm24 gene encodes a tandem kinase protein
(TKP) with a predicted kinase pseudokinase domain, which is
named  WHEAT  TANDEM  KINASE  3  (WTK3)  [13].
Pm24/WTK gene confers wheat resistance to 92 Chinese Bgt,
therefore gene ensures broad-spectrum resistance [51]. A rare
6-nucleotide  deletion  of  Lysine-Glycine  codons  in  kinase
domain 1 (Kin I) was identified to be important for the resistant
phenotype.  This  mutation  was  identified  only  in  wheat  from
Shaanxi province in China. It is predicted that the absence of
these two amino acids could provide the formation of a more
compact loop in the kinase structure, which could be important
for  subsequent  protein-protein  interactions  and  signal
transduction  for  resistance  development  [13].

1.5. RLK (Receptor-like Kinases)

These kinases initiate broad-spectrum resistance (PTI) [14,

15]. Genes of receptor-like kinases TaRLK1 and TaRLK2 were
identified  in  the  genome  of  T.  aestivum/T.  timopheevi
introgressive  line  [54].  The  genes  encode  a  protein  with  a
signal peptide, several LRRs, a transmembrane domain, and a
serine-threonine  kinase  domain.  The  lines  with  TaRLK1  and
TaRLK2 overexpression demonstrated an increase in the levels
of  endogenous  hydrogen  peroxide  (Н2О2)  under  pathogen
invasion  sites  [54].  This  could  indicate  the  possibility  of  a
hypersensitivity  reaction,  very  effective  in  resistance
development, not only due to the immune receptors NLR, but
also with  the  participation of  genes  with  a  wide spectrum of
action. This makes RLK genes prospective for the development
of plants with genetic resistance to powdery mildew. Genes of
both  kinases  are  localized  in  the  long  arm  of  wheat
chromosome  2B  [54],  where  previously  the  Pm6  gene  was
mapped, but in another region [53, 118, 119]. Perhaps it will be
difficult  to  clearly  distinguish  the  Pm6  gene  from  the  genes
TaRLK1  and  TaRLK2  through  their  introgression  origination
(T.  timopheevi).  Three  genes  may  be  members  of  one  gene
cluster [119].

1.6. Transporters

Long-term nonspecific  resistance  to  a  broad spectrum of
pathogens  is  conferred  by  transporter  proteins.  Resistance
genes  encoding  transporters  include:  Lr34/Yr18/Pm38/Ltn1
(7DS), which encodes АВС (ATP-binding cassette)-transporter
[16],  and  Lr67/Sr55/Yr46/Pm46/Ltn  (5DS),  which  encodes
hexose  transporter  [17].  These  genes  are  valuable  as  they
confer  effective,  potentially  long-term  resistance  to  several
important wheat pathogens: leaf rust (Puccinia triticina), stripe
rust (P. striiformis), powdery mildew (Blumeria graminis f. sp.
tritici), as controls a trait of leaf tip necrosis (Ltn1) [16]. The
gene  has  been  effective  for  more  than  50  years.  ABC
transporter could provide resistance development through the
export of metabolites affecting fungal pathogens’ growth [16].
Developed durum wheat (T. turgidum) transgenic lines for the
common  wheat  Lr34/Yr18/Pm38/Ltn1  gene  were  resistant  to
leaf rust, stripe rust and powdery mildew at the seedling stage,
and the resistance correlated with transgene expression [120].

(Table 1) contd.....



Improvement of Wheat Genetic Resistance to Powdery Mildew The Open Agriculture Journal, 2023, Volume 17   5

Lr67/Sr55/Yr46/Pm46/Ltn3  gene  encodes  a  hexose
transporter [17] and confers resistance to the three mentioned
before  pathogens,  and  to  stem  rust.  Hexose  transporter
transports  hexoses  through  the  plasma  membrane  [17,  121].
The gene is mapped in 5DS in wheat.

Fundamentally  different  groups  of  genes  for  active
resistance are Mildew Resistance Locus (MLO) and Enhanced
Disease Resistance 1 (EDR1). Firstly, the recessive alleles of
these  genes  are  effective  for  conferring  resistance;  secondly,
these  genes  provide  broad-spectrum  resistance  (to  different
pathogens  and  races  of  pathogens),  and  this  resistance  has
long-term  efficiency  within  the  temporal  persistence  of  this
genotype.  This  type  of  resistance  is  mediated  by  loss-of-
function  mutations  in  negative  regulators  of  resistance,
particularly  to  powdery  mildew.

1.7. Plant-specific Proteins

Resistance of this type was described in 30-40 years of the
XX  century,  and  in  1972  loss-of-function  mutation  was
characterized in barley [122]. MLO genes encode plant-specific
proteins with several transmembrane domains and a specific C-
terminal  calmodulin-binding  domain  [11,  123].  Loss-of-
function  mutation  in  MLO  was  characterized  as  universal,
conferring permanent resistance to all known barley powdery
mildew  races.  Recently,  such  mutations  were  identified  in
almost all plant species of agricultural importance [124, 125].
They attract attention as potential objects for gene engineering
using modern techniques of in situ genome editing [126 - 128].
Wheat  also  has  MLO  genes  in  the  chromosomes  of  the  first
homoeological group [129], therefore, recessive mutations of
these genes could be identified (or constructed) in wheat, and
they could confer resistance to a broad spectrum of powdery
mildew races [127, 128, 130].

1.8. Mitogen Activated Kinases

Gene  EDR1  encodes  MAPKKK  –  mitogen  activated
kinases with nuclear localization. EDR1 functions as negative
regulators of MAPK cascade in plants of wild type and plays a
role in the transduction of signals from the elicitor to plant cell
molecules.  The  function  of  these  genes  was  characterized  in
resistance to the pathogen in Arabidopsis mutants [131]. This
pathway is considered very conservative in plants, and the gene
could be used for the development of new ways of conferring
resistance  to  pathogens,  particularly  to  powdery  mildew  in
plants. In the wheat genome, this gene, TaEDR1, was identified
in  2005  through  cloning  using  PCR  with  primers  developed
from the sequence of the Arabidopsis gene [12]. It was used as
a target gene for CRISPR/CAS in situ editing with a positive
result: Taedr1 recessive gene wheat plants showed resistance to
powdery  mildew  without  significant  pleiotropic  effects  on
plant development. The gene is considered very promising for
developing stable lines through targeted mutagenesis [126].

Consequently,  all  genes  whose  products  are  involved  in
ensuring the resistance of wheat to powdery mildew form two
groups: genes of the immune receptors NLR, highly specific to
individual races of the pathogen, and genes whose products are
involved in the organization of basic processes of interaction of
cells  and  molecules.  They  form  the  resistance  of  a  wide

spectrum  and  are  now  considered  the  most  promising  for
ensuring  the  genetic  protection  of  wheat  from  powdery
mildew.

1.9. Blumeria Effectors

Blumeria  fungi,  from  the  order  Erysiphales,  division
Ascomycota,  are  a  monophyletic  group  originating  from
Leotiomycetes over 120 million years ago. They are obligate
biotrophic plant pathogens [132]. Similarly to other biotrophic
pathogens, they are able to develop only in the living tissues of
the host plants. For the realization of its life cycle, the powdery
mildew  pathogen  must  overcome  host  resistance  and  switch
cellular metabolism to meet its own needs [133, 134]. This is
achieved through the action of effector proteins produced by
the  pathogen  and  acting  as  virulence  factors  [135].  These
effectors  are  considered  the  main  determinants  of  the
interaction between plant and powdery mildew fungus and are
classified  as  candidate  secreted  effector  proteins  (CSEPs)
[136].  Effectors  are  secreted  via  the  fungal  endoplasmic
reticulum.  Some  of  them  stay  in  the  plant’s  apoplast,  while
other  enter  the  plant  cells  and  are  directed  to  organelles,
particularly  the  nucleus  [137].  Blumeria  effector  candidate
(BEC)  proteins  were  identified  in  high  concentrations  in
isolated  haustoria  [138].  According  to  literature  [139],  the
composition of CSEPs and BECs is almost the same. CSEPs
are currently classified into two groups: the so-called RNase-
like effectors [140], and proteins with structural homologies to
the  MD2-related  lipid-recognition  (ML)  domain,  ML-like
CSEPs  [141].  RNase-like  effectors  bind  to  NLR  immune
receptors  [142  -  144],  and  currently,  more  than  one  hundred
genes encoding them are identified in Bgt genome [140, 144 -
146]. ML-like CSEPs bind to specific lipids [147].

Genome sequencing of wheat and barley powdery mildew
pathogens identified a reduction of gene content compared to
other  ascomycetes  and  an  expansion  of  gene  complements
encoding putative effectors [136, 148].  Currently,  at  least  35
CSEP  genes  are  cloned.  They  encode  proteins  of  63  to  314
amino acid residues, all of which have a secretion signal [142,
144, 149 - 151]. Except for this signal, effector proteins have
few  similarities,  and  only  one  common  motif  YxC has  been
identified  [152].  This  confirms  the  assumption  that  effector
proteins  have  different  partners  for  interaction  among  plant
proteins and have different functions [148, 153]. Considerable
polymorphism  of  gene  sequences  is  observed  even  on  the
population  level,  which  indicates  independent  evolution  of
different  alleles  of  effector  genes  through  various  molecular
mechanisms [142, 146, 150, 151, 154].

Effector  proteins’  action  is  considered  to  overcome PTI;
the first level of plant’s nonspecific defense from pathogens.
The following defense level is realized when specific R genes
are present, which encode immune receptors and confer race-
specific resistance. Fungal genes encoding effectors activating
a specific response in plants are named Avr genes.

In  Bgt  genome,  currently  several  Avr  genes  are  cloned:
AvrPm3a2/f2,  AvrPm3b2/c2,  and  AvrPm3d3,  which  are
recognized  by  Pm3a/Pm3f,  Pm3b/Pm3c  and  Pm3d  gene
products, respectively [142, 150]; AvrPm2 recognized by Pm2
product  [144];  AvrPm1a  recognized by Pm1a  product  [151];
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AvrPm17  recognized by Pm17  gene product  [146].  Blumeria
AVR  effectors  are  small  proteins  of  102-130  amino  acid
residues  with  N-terminal  signal  peptide,  a  very  conservative
motif after signal sequence, and conservative cysteine residues
towards  the  C-terminus.  Similarly  to  other  CSEPs,  they  are
highly variable [140, 145, 150, 154].

Consequently, pathogen effectors play a determinant role
in  initiating  processes  that  culminate  in  wheat  injury  by
powdery mildew or the development of a resistance reaction.
The initiation of the process lies in the interaction of effectors
with the products of plant resistance genes.

1.10.  Interaction  of  Pm  Gene  Products  with  Pathogen
Effectors (Avr Gene Products)

For  their  development  in  living  plant  tissues,  biotrophic
pathogens  need  to  suppress  the  protective  reactions  of  the
plant.  For  this  purpose,  pathogens  use  their  effectors,  which
overcome  PTI.  Subsequently,  pathogen  effectors  are
recognized by NLR plant proteins, and ETI resistance reaction
is  activated.  Plant  resistance  acquired  as  a  result  of  NLR
protein and pathogen effector interaction is usually associated
with local cell death (hypersensitive response) [155].

Pathogen  effectors  (Avr  gene  products),  which  are
recognized  by  plant  R-proteins,  are  often  polymorphic  for
different  fungal  isolates.  For  the  recognition  of  different
pathogen  effectors,  plants  have  various  resistance  genes  or
different  alleles  at  one  locus.  The  set  of  Blumeria  graminis
isolates includes many sub-lineages, which are named formae
speciales (f.sp.). Belonging to a certain sub-lineage depends on
the  specificity  of  certain  cereal  species  which  could  be
affected, and this type of resistance is named host resistance. In
the  case  when  wheat  is  affected,  this  is  B.g.  tritici  formae
speciales  (Bgt  f.sp.),  for  rye  –  B.g.  secalis  formae  speciales
(Bgs  f.sp.),  for  barley  –  B.g.  hordei  formae  speciales.  If
effectors Bgs f.sp,  for example,  may be recognized by wheat
immune  receptors,  this  kind  of  resistance  is  named  nonhost
[156]. It is assumed that in the presence of host resistance to
Bgs  f.sp  in  wheat,  effectors  of  Bgs  f.sp  are  not  subject  to
selection  on  the  background of  wheat  immune receptors  and
these formae speciales remain nonadapted [150].

Several studies have been conducted for the Pm3 gene to
understand the mechanisms of interaction between plant’s Pm
gene and pathogen’s AvrPm gene products. The study has been
conducted  by  mapping  populations  from crosses  of  different
Blumeria  genotypes  (different  Bgt  f.sp.),  modern methods of
analyzing  DNA  sequences,  including  rapid  genotyping
methods  and  development  of  genetic  constructions  with  the
studied  elements  controlling  virulence/avirulence  trait  using
transient  expression  systems  in  Nicotiana  benthamiana  after
agrobacterial  transformation  [142].  Wheat  Pm3  gene  is
recognized as contributing to both host and nonhost resistance,
because the products of its alleles are recognized by not only
Bgt f.sp,  but  also Bgs f.sp.  According to a study [149],  these
effectors are ancient conservative virulence factors,  and they
have  been  present  in  genotypes  of  Bgt  f.sp.  even  before  the
introgression of the Pm17  gene into the wheat genome. Pm8
(in  1BS.1RL  translocation)  and  Pm17  (in  1AL.1RS
translocation) resistance genes were introgressed from rye into

the wheat genome; these genes are homologous to wheat Pm3
gene,  and  are  likely  of  orthologous  origin  [146].  For  this
reason,  race-specific  resistance  conferred  by  these  genes  has
been  rapidly  overcome  by  the  virulent  effector  AvrPm17,
encoded by two paralogous genes mapped in dynamic effector
clusters specific to Bgs and Bgt genomes [146].

For the Pm3 locus, currently, the greatest number of alleles
(17) were identified (Pm3a-g; Pm3k-Pm3t) [157, 158]. Protein
products of these different alleles have high sequence similarity
(>97%),  however,  they  recognize  effectors  of  different  Bgt
isolates [158].  Studies of the interaction of wheat  Pm  genes’
products (particularly different Pm3 alleles) with Bgt pathogen
effectors  are  an  important  model  for  understanding  the
mechanisms  underlying  resistance  specificity  [145,  150].
Pm3а,  Pm3b,  Pm3c,  Pm3d,  Pm3e,  and  Pm3f  alleles  of  the
polymorphic  Pm3 gene  were  studied  in  wheat  genotypes  for
their  response  to  corresponding  AvrPm  alleles  in  fungal
genotypes [143, 150]. For the determination of genetic control
of avirulence/virulence trait, the results of F1 segregation were
studied. F1 generations were obtained from crosses of pathogen
genotypes  with  alternative  trait  manifestation:  one  genotype
was avirulent for plants with any of the specified Pm3 alleles,
while the other genotype was virulent. It was determined that
depending on plant resistance allele pathogen avirulence could
be conferred by one (alleles AvrPm3a, AvrPm3с, AvrPm3e), two
(haplotype AvrPm3f1-AvrPm3f2), or three (haplotypes AvrPm3b1-
AvrPm3b2-AvrPm3b3, AvrPm3d1-AvrPm3d2-AvrPm3d3) loci. Each
of  these  proteins  is  specifically  recognized  by  the
corresponding  Pm3  alleles.  On  the  part  of  the  pathogen,
another gene is involved in controlling the virulence reaction,
SvrPm3a1/f1 [143]. The product of this gene acts as a suppressor
of recognition of avirulence effectors AvrPm3a2/f2, AvrPm3b2/с2

and AvrPm3d3 by-products of plant Pm3a-f allele [142].

Pathogen avoidance from recognition by immune receptors
occurs  in  case  of  its  change  that  it  is  not  recognized  by  the
plant  receptor.  Mechanisms  of  changes  of  the  effector  gene
include missense mutations with a change of at least one amino
acid  [150,  154],  truncation or  deletion of  the  Avr  gene [145,
146], and, as it was demonstrated for the interaction AvrPm3-
Pm3,  involvement  of  one  more  gene  in  the  control  of
recognition  reaction.  That  is  gene  SvrPm3,  the  product  of
which suppresses recognition of the respective effector [149].
The other type of polymorphism, which underlies the gain of
virulence,  is  effector  gene  duplication,  which  enables
independent diversification of the two virulence genes [158].

So,  to  date,  it  has  been  experimentally  proven  that  the
development of ETI is the result of the interaction of products
of highly specific plant Pm genes and AvrPm/SvrPm genes of
the pathogen. There may be more than one gene on both sides.
A long, multi-stage experiment involving alleles of the plant
gene  Pm3  and  the  corresponding  effectors  of  the  pathogen
showed that to understand the genetic basis of a highly specific
reaction between immune receptors and pathogen effectors for
each individual case, the task is very difficult and, as it seems
to us, will not acquire practical significance.
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1.11.  Pm  Genes  Present  in  the  Current  Genetic  Pool  of
Common Wheat

The  first  Pm  gene  in  wheat  was  identified  in  the  Thaw
cultivar  by  Australian  researcher  Waterhouse  in  1910  [159],
and  currently,  the  identification  of  new resistance  genes  and
alleles  continues.  Resistance  genes,  first  of  all,  could  be
classified into two groups: genes from the native genetic pool
of common wheat and genes introgressed from cultivated and
wild relatives (Table 1).

As  can  be  seen  from  Table  1,  some  parts  of  Pm  genes
identified in modern cultivars and local varieties of common
wheat have an introgression origin. This is the result of long-
lasting work using initially only cytogenetic methods of work
with  plant  material  obtained  by  wide  hybridization  of  wheat
with numerous wild relatives. Later studies in this area became
optimized  by  the  use  of  molecular  genetic  markers  and
methods of work with DNA sequences. Significant interest in
resistance  gene  introgression  to  the  common  wheat  genome
could be explained by two reasons. Firstly, among researchers
of  the  last  century,  the  idea  of  the  impoverishment  of  the
common wheat genetic pool by resistance genes has arisen, and
this  impoverishment  involved  resistance  genes  to  biotic
stresses  [160].  This  was  explained,  on  the  one  hand,  by  the
hypothesis  of  monophyletic  wheat  origin;  however,  this
hypothesis  is  not  supported  by  all  researchers  [161  -  164].
Possible  monophyletic  wheat  origin  by  itself  could  be  the
reason to believe that the wheat genetic pool did not include
many  resistance  genes,  and  its  resistance  could  have  quite  a
limited variety of molecular genetic mechanisms. On the other
hand,  as  it  is  always  indicated,  the  genetic  pool  of  modern
cultivars  is  limited  by  the  variability  inherent  to  commercial
varieties and local landraces or lines, which could be used for
intraspecific hybridization [165, 166]. Quite a long time ago,
the assumption was made [167, 168] that for the wheat genetic
pool  widening,  its  numerous  wild  relatives  could  be  used,
including  those  having  genomes  different  from  wheat.  This
idea turned out to be constructive, and for several decades the
common  wheat  genome,  and,  to  a  lesser  extent,  the  durum
wheat  genome,  were  artificially  supplemented  by  genes
(alleles),  which  had  not  been  naturally  inherent  to  these
species.  Wheat  genetic  pool  became  enriched  in  resistance
genes to many devastating diseases, including powdery mildew
(Table 1). The second reason making introgression popular was
very widespread at the beginning of such work confidence that
genetic  resistance  introgressed  from  wild  relatives  could  be
more long-lasting compared to resistance controlled by wheat
genes  [24].  Practical  experience  over  several  decades
demonstrated  that  this  was  not  always  the  case.

Resistance  genes  introgressed  from  wild  relatives  have
limitations  in  their  use  in  wheat  cultivars’  resistance
improvement, because they are often part of alien chromatin of
some  amount,  which  could  also  contain  genes  deteriorating
cultivars’  agricultural  traits  (linkage  drag)  [169].  For  the
separation of resistance genes from other genes with negative
effects,  many  backcrosses  are  usually  needed;  moreover,
recombination  between  alien  chromosomes  of  wild  relatives
and  wheat  homoeologous  chromosomes  is  limited  by  Ph
(pairing  homoeologous)  gene  [106,  114].  To  obtain

recombination  between  alien  chromosome  fragments
containing resistance genes and wheat chromosomes, ph gene
mutants  could  be  used  [106].  In  the  case  when  sexual
hybridization and recombination of genetic material in hybrid
genomes are, for some reason, impossible, genetic engineering
and transformation of plant cells could be used. Clearly, for the
development  of  genetic  constructs  with  particular  resistance
genes,  these  genes  must  be  cloned  and  available  for  use  as
nucleotide sequences [170, 171].

Thus,  the  main  characteristic  of  modern  wheat  varieties
relative  to  powdery  mildew  resistance  genes  is  the  limited
number of effective genes in the genetic pool of these varieties.
This  creates  favorable  conditions  for  overcoming  plant
resistance through the positive selection of pathogen isolates
with such mutations in the AvrPm genes that their products are
no  longer  recognized  by  the  plant's  immune  receptors.  The
most common conclusion in the relevant literature is the belief
of researchers in need to constantly replenish the genetic pool
of wheat with new genes of resistance to powdery mildew.

1.12.  Prospects  for  Improvement  of  Wheat  Genetic
Resistance to Powdery Mildew

The  review  of  the  present  literature  on  wheat  genetic
resistance to powdery mildew demonstrates that the transfer of
resistance genes from wild relatives to wheat remains an urgent
problem.  Genetic  engineering  methods  began  to  be  used  to
develop  constructs  containing  target  resistance  genes.
However,  resistance  genes  must  be  previously  cloned  and
available for constructs’ development [170, 171]. Furthermore,
currently, introgressive hybridization has been associated with
the induction of plant genome variability [172, 173], and due to
this, rearrangements of common wheat genetic material could
arise in its genome with the following formation of a new allele
of  the  resident  resistance  gene  [89],  and  changes  in
transcription  regulation  could  occur  [106].  Many  NBS-LRR
encoding resistance genes are known to be localized in plant
genomes  in  clusters  [174,  175].  These  gene  clusters  and
repeated  sequences  (encoding  LRR-repeats)  provide  more
opportunities  for  recombination  and  gene  conversion,  which
could provide the formation of new resistance alleles and new
races  of  the  pathogen  [176],  and  alien  chromatin  could  be  a
trigger  of  these  processes.  Furthermore,  it  has  been
demonstrated  that  nonfunctional  resistance  genes
(pseudogenes)  are  widespread  in  plant  populations,  and  they
could  promote  the  formation  of  new  functional  genes  [177].
Alternative splicing of mRNAs of many NBS-LRR genes also
adds  complexity  and variety  to  plant  defense  reactions  [175,
176].  All  information  mentioned  above  does  not  add
confidence  that  the  resistance  of  descendants  from  distant
crosses  is  conferred  exactly  by  the  alien  resistance  gene.
Nevertheless,  according  to  modern  research,  it  could  be
predicted that wild relatives would be further used for wheat
gene pool enrichment in resistance genes to powdery mildew.

Compared  to  previous  decades,  when  attention  was
focused  on  resistance  genes’  introgression,  currently,  the
search  of  new resistance  genes  in  wheat  genotypes  has  been
activated.  Wheat  landraces  and  local  varieties  which  have
limited  distribution,  possibly  would  not  create  a  genetic
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background  for  high  selective  pressure  for  the  new  virulent
fungus  mutant’s  evolution  [97,  108,  111,  114,  178,  179].  In
addition,  their  use  is  more  convenient  at  least  because  the
transfer of resistance genes is not associated with linkage drag,
an integral part of distant hybridization [114, 180, 181].

For  the  search  of  new  resistance  genes  and  their
characterization,  modern  methods  of  direct  genome  analysis
are increasingly involved. To map the resistance genes within
the  wheat  genome,  a  variety  of  molecular  genetic  markers
designed for different types of cereals [106, 111, 130, 182], and
fine mapping of Pm genes [183 - 186]. The most modern map-
based cloning method could be used, which is essentially the
method of position cloning: a resistance gene is identified only
through its localization in a particular chromosome or its part
through the association of  the desired phenotype (resistance)
and a number of molecular markers, previously mapped on the
chromosomes of the genome. That is, the candidate region is
identified by the traditional linkage analysis with the following
sequencing of  the  region of  interest  and identification  of  the
DNA  fragment  with  different  sequences  for  two  alternative
phenotypes [13, 25, 45, 52, 73, 96, 182, 185, 187, 188]. Next
fine mapping enables the identification of all polymorphisms in
the  region  of  interest  and  the  determination  of  haplotypes
(combination  of  particular  genetic  elements)  associated  with
resistance  [182,  184,  186,  189].  Both  the  data  on  the
sequencing of the resistance gene and the determination of the
haplotype associated with resistance provide information about
the molecular nature of the product of the resistance gene and
its  participation  in  the  initiation  of  the  plant's  protective
reaction against the pathogen. The use of the RNA-Seq method
could be especially effective, because this method enables the
comparison  of  transcriptomes  obtained  in  the  conditions  of
pathogen  attack  or  without  pathogen.  This  enables  the
identification of the gene of interest and the determination of
its  function  without  the  mapping of  this  gene  in  the  genome
[89, 109, 190]. Modification of this method BSR-Seq (bulked
segregant  RNASequencing)  allows  to  work  with  segregating
populations  and  to  determine  the  localization  of  resistance
genes  in  the  genome  using  molecular  markers  with  known
localization  and  polymorphic  for  different  resistance
phenotypes  [52].

The  results  of  sequencing  of  resistance  genes  and  their
products  have  demonstrated  that  there  was  a  fundamental
difference in the structures of protein products conferring race-
specific  and  broad-spectrum  resistance.  It  was  demonstrated
that race-specific resistance controlled by R genes is based on
the  molecular  level  of  mutual  recognition  of  plant  immune
receptors and pathogen’s effectors. Effector is avirulent as long
as this recognition occurs. When the effector gene mutates (this
process is random and permanent) and the effector becomes no
longer recognizable by the plant immune receptor, a resistance
reaction does not develop. The main and determining factor for
developing a strategy for the genetic protection of plants is that
the plant gene acts as a passive element. Certainly, a plant gene
can  also  mutate,  however,  its  mutation  is  also  random,  the
probability  that  the  new  mutation  will  provide
complementation  (recognition)  of  the  mutated  effector  is
insignificant,  and  expecting  this  mutation  is  not  a  promising
method  to  deal  with  the  problem.  Other  types  of  proteins

participating  in  conferring  resistance  are  kinase  proteins.
Usually they confer broad-spectrum resistance, like receptor-
like kinases TaRLK1 and TaRLK [54], whose products initiate
a  non-race-specific  hypersensitive  response  in  plants.  This
means  that  the  effectiveness  of  the  effector  mutation  is  lost.
Pm21  gene  product  is  a  serine/threonine  kinase  with
nonspecific action [71]. This gene was transferred to the wheat
genome  from  Haynaldia  and  was  effective  against  powdery
mildew for about 20 years despite its wide distribution in wheat
cultivars. The Pm24/WTK gene also encodes kinase; this gene
was identified in wheat local landraces of provinces of China
and conferred resistance to many Bgt races. The effectiveness
of this gene depends on the presence of a rare 6-bp deletion in
the  kinase  domain  [13].  Such  molecular  structure  of  the
resistant  allele  makes  it  prospective  to  artificially  modified
susceptible  alleles  of  this  gene  through  the  introduction  of
deletion,  possibly  using  the  CRISPR/Cas  method  of  genome
editing  [126,  130].  The  example  given  confirms  the
effectiveness of studding rare wheat genotypes as prospective
sources of useful genes. These genes, unlike resistance genes
of  wild  relatives,  are  also  prospective  because  they could  be
transferred  to  commercial  wheat  cultivars  easily,  with  any
recombination level, and without linkage drag. They emphasize
the significance of the determination of the molecular nature of
a  resistance  gene  product  for  making  predictions  about  its
prospects for introgression to the wheat genetic pool because
this work requires much time and effort. In our opinion, simply
increasing  the  number  of  introgressed  to  wheat  genetic  pool
resistance genes without determination of the molecular nature
of their products could appear to be a direction with reduced
prospects.

CONCLUSION

The  prospective  direction  of  research  for  providing
effective long-term and controlled wheat genetic resistance to
the biotrophic pathogen Blumeria is molecular genetic studies
of wheat plants and pathogen races. For this, it can be applied
both traditional methods of crossing and mapping populations’
development  for  plants  and  fungi,  and  modern  methods  of
genome analysis for direct (not through phenotype) genotyping
of  members  of  segregating  populations  of  plant  or  fungus.
Clear  understanding  of  the  molecular  nature  (structure  and
function) of the plant protein conferring resistance, and its role
in the development of the molecular picture of plant protection
against  the  pathogen,  will  enable  to  evaluate  any  new  gene
(introgressed to the wheat genetic pool or identified in wheat
local  varieties,  or  edited  in  situ  using  corresponding
technologies)  on  how  prospective  could  this  gene  be  for
introduction  into  commercial  wheat  cultivars  for  conferring
reliable and long-lasting powdery mildew resistance.
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