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Abstract: Robotic harvesting offers a solution to reducing labor costs, optimizing harvest scheduling, enabling selective harvesting, and increasing
operation efficiency. These attributes allow the users of robotic harvesters to maximize production efficiency and profits. This article reviews
automated fruit harvesting systems of sweet pepper, tomato, apple and kiwifruit as an example to demonstrate the recent advances in intelligent
automatic harvesting robots in horticulture.
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1. INTRODUCTION

Automation of agriculture is an innovation that can reduce
the  utilization  of  resources  and  help  meet  with  increasing
demand  for  more  productivity  and  higher  quality  of  food
production [1]. Human has long strived for mechanization in
crop  management  and  harvest  to  reduce  labor  costs.  The
operation  of  harvest  usually  occurs  when  a  crop  reaches  its
mature  stage.  Harvesting  a  large  hectarage  of  crop  within  a
short  period  of  time,  however,  is  difficult,  labor-some,  and
time-consuming.  A  solution  to  these  problems  is  to  develop
and  use  mechanical  systems  that  are  able  to  complete  the
harvesting operations. Mechanized fruit harvesters are one of
these systems that have a conventional electro-hydraulic con-
trol  mechanism  to  shake  nut  and  fruit  trees  to  help  matured
nuts or fruit drop off the trees. Such harvesters generally need
to be driven to a location proximate to a tree to be harvested,
with a shaker head that can extend towards the tree. The shaker
head includes movable jaws with pads that clamp the tree and a
motor that powers the shaking process [2]. The next develop-
ment towards advanced, automated mechanization is to inte-
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grate  with  artificial  intelligence  to  increase  selectivity,
precision, and robustness of farming. This is especially true for
harvesting  of  high  value  crops,  such  as  capsicums,  since
harvest operation must occur multiple times during a growing
season.  Automation  of  the  harvesting  task  can  result  in  a
significant labor saving and provide gentle handling of the fruit
as well [3].

Undesirable performance of computer sensing technology
is one of the major obstacles in the development of intelligent
automated  crop  management  systems.  For  the  past  decades,
object localization through computer-assisted vision has been
developed,  resulting  in  a  success  of  its  application  in  many
industry  areas  [4].  However,  the  application  of  these  tech-
nologies in agriculture is still in its infancy stage [5, 6]. This is
due  to  the  difficulties  and  infeasibilities  to  collect  a  large
amount  of  detailed  and  annotated  agricultural  data  that  are
required to develop these automated crop management systems
[4].

Autonomous  robotic  harvesting  is  a  challenging  but
exciting technology for modern agriculture. Developing such
systems  requires  the  integration  of  multiple  subsystems
including  crop  detection,  motion  planning,  and  dexterous
manipulation [7]. An important part of any robotic fruit picking
system is the end effector. The end effector is used by the robot
to touch and interact with the crop. Thus, its design is critical to
reliable handling and detachment of the crop [3]. This article
reviews  automated  fruit  harvesting  systems  of  sweet  pepper,
tomato, apple and kiwifruit as an example to demonstrate the
recent  advances  in  intelligent  automatic  harvesting  robots  in
horticulture.
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2. INTELLIGENT AUTOMATED FRUIT HARVESTING
ROBOTS

2.1. Robotic Harvesting of Sweet Pepper

An  automated  sweet  pepper  harvesting  robot,  named
‘Harvey’,  has  been  developed  recently  [7].  This  robot  suc-
cessfully  addresses  three  key  challenges:  detection,  grasp
selection  and  manipulation.  They  developed  a  simple  and
effective  vision-based  algorithm  for  fruit  detection,  a  three-
dimensional  localization  and  grasp  selection  method,  and  a
novel  end-effector  design  for  fruit  harvesting.  To  reduce  the
complexity  of  motion  planning  and  minimize  occlusions,
Lehnert et al. 2017 [7] focused on developing a system picking
sweet  peppers  in  a  protected  cropping  environment  where
plants  were  grown  on  planar  trellis  structures  (Fig.  1).

In Fig. (1), the left photo (A) is the custom mobile platform
of the harvesting robot. Harvesting is performed with a custom
harvesting  tool  and  7  Degree  of  Freedom  (hereafter,  DOF)
manipulator (6-DOF articulated arm + lift joint) integrated into
a custom differential drive mobile base. The right photo (B) is
the custom harvesting tool  attached to the robot  end effector
[7].

In  the  field  evaluations,  this  sweet  pepper  harvesting
system resulted in a 58% harvesting success rate, 81% grasping
rate,  and  90%  detachment  rate.  Such  high  success  rates
represent a significant improvement over the previous state-of-
the-art  technologies,  demonstrating  an  encouraging  progress
towards  the  possibility  of  developing  a  commercially  viable
autonomous  sweet  pepper  harvester.  Moreover,  Fig.  (1A)
shows the custom differential drive platform that is designed
and powered by an internal 3 kWh lead-acid battery to work
between  crop  rows  for  up  to  8  hours.  The  platform has  a  6-
DOF  revolute  arm  (Universal  Robotics  UR5)  mounted  on  a
prismatic  lift  joint  (Thomson  LM80).  The  differential  drive
mobile  base  houses  the  batteries,  drive  motors,  gearboxes,
computer hardware, robot controller and forward-facing laser
scanner for mobile navigation and obstacle detection. Fig. (1B)
shows the custom harvesting tool that can grip sweet peppers
with a suction cup and cut them free from the plant using an
oscillating cutting blade. Due to variations in crop size, shape
and orientation, it is challenging and unreliable to use a single
end-effector  to  grasp  and  cut  each  sweet  pepper  simul-
taneously.

To  overcome  this  difficulty,  this  harvesting  tool  is
redesigned with a key feature of having a passive decoupling
mechanism that allows the gripping and cutting operations to
occur  sequentially  at  independently  chosen  locations.  The
decoupling mechanism is a flexible strip that tethers the suction
cup  to  the  body  of  the  end  effector.  The  suction  cup  is  also
magnetically  attached  to  the  underside  of  the  cutting  blade,
allowing  the  robot  arm  to  guide  the  suction  cup  during  the
attachment phase. After attachment, the cutting blade is lifted
to decouple the suction cup from the cutting blade. The suction
cup is  then  only  attached  to  the  end  effector  via  the  flexible
tether, allowing the cutting blade to move independently of the
suction  cup through the  cutting  operation.  After  detachment,
the sweet pepper falls off the plant and hangs freely from the
flexible  tether.  The  suction  cup  and  cutting  blade  can  be

magnetically  re-coupled  ready  for  the  next  harvesting  cycle
using  gravity  by  simply  pointing  the  harvesting  tool  down-
wards. The sweet pepper is released into a collection crate by
releasing  the  vacuum.  This  simple  and  passive  decoupling
method requires no additional actuators, allowing for a greater
harvesting  success  rate.  The harvesting  tool  also  contains  an
RGB-D camera (Intel R Realsense SR300 RGB-D) sensor to
perceive  the  crop  and  a  micro-switch  to  check  whether  the
suction cup is coupled with the cutting blade. The body of the
end effector contains a modified oscillating multi-tool that is
used to cut fruit stalks. A pressure sensor on the vacuum line
helps detect the success or failure of attachment of the suction
cup.

2.2. Robotic Harvesting of Tomato

The  robotic  harvesting  system  of  tomato  is  presented  in
Fig. (2).

Fig.  (2A)  shows  the  system  configuration  of  the  tomato
harvesting  robot  and  its  external  appearance.  In  Fig.  (2),  the
left photo (A) is the tomato harvesting robot system. And the
right photo (B) is the 3-dimentional position measurement of
the  tomato  fruit:  A  proposed  detection  and  discrimination
method  [8].

The robot assumes a large-scale tomato production facility
as  the  house  environment.  In  the  house,  there  are  tomato
seedlings with multiple bunches, with shelves aligned in a line.
And along the shelf rails for the bogies, the workers move and
harvest tomatoes. This system consists of a Kinect v.2, a USB
camera,  a  6-axis  serial  link  manipulator,  an  end-effector,  a
computer,  and  a  moving  mechanism  that  carries  and  moves
them along the rails. To move around, there are three operation
steps:

Step  1  -  Move to  the  edge  of  the  shelf  with  a  bogie  and
generate  an  environmental  map  of  the  entire  shelf  from  the
acquired image;

Step 2 - Extract information such as tomato condition to be
harvested,  its  fruit  position  and  total  harvest  time  through
analyzing  the  environmental  map;  and

Step 3 - Move the dolly to the front of the harvested bun-
ches and harvest the fruits in order.

Fig.  (2B)  shows  a  flow  of  3-dimensional  position
measurement of the fruit. A Kinect sensor captures the RGB-D
image and IR image of tomato at 30 fps. Next, the IR image is
processed  to  detect  the  position  of  the  fruit.  From  the  pixel
information  of  the  RGB-D  image  corresponding  to  the
detection  position,  the  fruit  color  determination  and  the  3-
dimensional  position  measurement  are  performed.  In  this
paper, a fruit detection and discrimination method in the room
is  proposed.  The  fruit  on  the  IR  image  shows  a  concentric
reaction  with  a  strong  center  and  a  weak  perimeter.  The
gradient  orientation  (8  azimuth  angle)  of  the  IR  image  is
calculated  and  showed  to  be  not  dependent  on  the  absolute
value  of  the  response  intensity,  and  the  gradient  orientation
image  (each  orientation  is  represented  by  eight  colors)  fruit
pattern template matching. In comparison [8], they only extract
the  region  with  high  coincidence  rate  by  the  binarization
process  and  label  it  to  detect  the  position  of  the  fruit.



Automated Fruit Harvesting Robots The Open Agriculture Journal, 2019, Volume 13   103

Fig. (1). The mobile harvesting robot ‘Harvey’ of sweet pepper operating in a protected cropping environment.

Finally,  the  correspondence  between  the  red  region  of
image extracted from the RGB image and the pixel position of
the IR image is performed, and the coloring judgment is carried
out.

In Fig. (3), a kinematically redundant picking manipulator
with 8-DOF for  apple fruit  collection is  presented.  Fig.  (3A)
shows  the  8-DOF  picking  manipulator  includes  all  revolute
arm with 6-DOF fastened to the base actuated by two stepper
motors. On the redesigned catching robot, each Dynamixel Pro
actuator  is  placed  at  the  joint  location.  Fig.  (3B)  shows  the
experimental set-up used during the pick-and-place harvesting
motion. The picking manipulator deposits the artificial apple in
the container after it is detached from the replica tree. Fig. (3C)
shows  the  picking  manipulator  grasping  fruit  from  the  tree
canopy.  The  machine  vision  system  is  located  behind  the
harvesting  robot  [9].

The  picking  manipulator  has  8-DOF  and  a  6-DOF  all-
revolute  arm  with  Dynamixel  Pro  actuators  (Robotis  Inc.,
Irvine,  CA)  fastened  to  the  base  that  can  displace  in  the  x-y
plane. Both prismatic joints on the base are actuated by NEMA
23 stepper motors and consist of steel rails with linear bearings
and timing belts. The picking end-effector design is similar to
that described by Silwal et al. [10]. The catching manipulator is
a  planar  design  with  two  links.  Geometric  parameters  are
selected such that the catching manipulator could reach every
possible  drop  position  in  the  workspace  of  picking
manipulator. Each joint is actuated by a Dynamixel Pro model
L54-50-S500-R (Robotis Inc., Irvine, CA). The stepper motors
and mechanical  transmissions used in the preliminary design
[11]  are  replaced  with  Dynamixel  Pro  actuators  in  order  to
increase torque output, increase velocity, and reduce backlash.

It  should be noted that although this design modification
increases the overall system cost, it significantly improves its
maximum  end-effector  velocity  as  well  as  accuracy  and
repeatability from reduced backlash. The manipulator’s links
are fabricated from aluminum plate. The catching end-effector
is a plastic funnel lined with flexible baffles manufactured with
a  three-dimensional  printer.  The  fruit  collection  system  is
gravity  fed.  A  flexible  hose  attached  to  an  opening  at  the
bottom of the catching end-effector funnels fruit into a storage
container.

2.3. Robotic Harvesting of Apple

The robotic harvesting system of apple is presented in Fig.
(3).

Fig. (3A) shows the robotic harvesting system of apple that
consists of picking manipulator, picking end-effector, catching
manipulator and catching end-effector.

Fig. (3B) shows that a wooden storage crate is fastened to
the table adjacent to the picking manipulator during harvesting
cycles  using  the  pick-and-place  method.  The  location  of  the
storage  crate  is  not  optimized  according  to  the  criteria  of
performance.  Rather,  a  convenient  location for  the described
setup  is  chosen  such  that  the  crate  does  not  obstruct  robot
hardware during the picking motion. After detaching an apple
from the tree, the picking manipulator deposits the fruit in the
container.  For  each  harvesting  cycle,  three-dimensional
coordinates of all fruit positions are generated using Matlab’s
(Mathworks, Natick, MA) random number generator.

Both  harvesting  methods  are  then  used  per  cycle  so  that
total  displacement  between  apples  remains  constant  when
comparing  cycle  times.  Sequential  fruit  selection  in  a  har-
vesting cycle is considered as the Traveling Salesman Problem
(TSP).  The  TSP  is  an  optimization  problem  predicated  on
finding  the  shortest  path  through  a  set  of  points  that  passes
through each point once and only once [12]. Matlab’s k-nearest
neighbor algorithm [13] is used for fruit prioritization.

The  algorithm’s  starting  point  for  the  search  is  the  end-
effector  coordinates  at  the  picking  manipulator’s  home
configuration. The algorithm selects the closest fruit as the first
apple  for  harvesting  and  then,  sequentially,  the  nearest
neighbors  for  the  remaining  fruit  in  a  cycle.  Prioritization
planning  is  completed  offline  before  the  start  of  each  cycle.
Trapezoidal  velocity  profiles  are  used  for  manipulator
movements  planned  in  the  joint  space  with  the  maximum
velocity of all revolute joints set at 60o  per second. Also, the
approach distance d is set at 15 cm. Fig. (3C) shows that the
integrated system is mounted on the back of an electric utility
vehicle  for  harvesting  the  apple  variety  Envy  in  a  V-trellis
orchard system.
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Fig. (2). Tomato harvesting robot.

Fig. (3). The dual robot coordination for apple harvesting.

Optimization  of  the  collection  system below the  level  of  the
catching end-effector, such as implementation of a bin filling
device,  requires  additional  works.  Initial  observations  from
preliminary  testing  indicate  that  the  current  design  requires
substantial  modifications  prior  to  more  extensive  field  eva-
luations.

2.4. Robotic Harvesting of Kiwifruit

The robotic harvesting system of kiwifruit is presented in
Fig. (4).

In Fig. (4) the kiwifruit harvesting robot demonstrates its
functions  of  separating  kiwifruit,  nondestructive  picking  and
unloading of clustered kiwifruit  in scaffolding cultivation by
the integrated grabbing-picking-sliding harvesting method. Fig.
(4A)  is  the  image  of  the  kiwifruit  harvesting  robot  and  Fig.
(4B) shows its simulation test in the laboratory [14].

Fig. (4A) shows the kiwifruit picking robot consisting of
five  main  parts:  Machine  vision,  end-effector,  coordinate

manipulator, vehicle system, and control system. The picking
robot can automatically undertake the tasks of fruit information
recognition, positioning, picking order planning, movement to
kiwifruit  picking  area,  nondestructive  picking  by  bionic
fingers,  and  unloading  fruit  to  the  basket.

Fig.  (4B)  shows a kiwifruit  picking test  being conducted
with  emulated  fruit  in  an  artificial  shelf  in  farm  machinery
laboratory of Northwest Agriculture and Forestry University of
China.  Among  the  30-fruit  set  (divided  into  6  groups,  5  per
group) to be harvested, 27 were successfully harvested with a
success rate of 90%. The 10% failure to harvest the fruit was
due  to  the  fact  that  the  parts  with  IR  sensors  affected  the
grabbing movement of the end-effector when it enveloped the
adjacent fruits. The average picking time was 4 seconds, which
was  similar  to  that  of  manual  picking  but  remarkably  more
efficient  than  the  formerly  developed  end-effectors.  The  lab
simulation test validates that the end-effector can completely
fulfill all given functions in harvesting kiwifruit.
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Fig. (4). Kiwifruit harvesting robot.

CONCLUSION

In this article, we have reviewed four intelligent automated
fruit  harvesting  robots  that  are  designed  to  harvest  sweet
pepper, tomato, apple and kiwifruit. Each harvesting robot has
its unique features to complete its operation. The sweet pepper
harvesting  robot  has  a  novel  end-effector  that  facilitates
effective  vision  system  for  fruit  detection,  3-dimensional
localization  and  grasp  selection,  resulting  in  a  great  success
rate of grasping, detachment and harvesting.

The main feature of the tomato harvesting robot is to use a
Kinect  sensor,  particularly  use  3-dimensional  position
detection and color discrimination together with a fruit pattern
template  matching,  to  capture  the  RGB  and  IR  images,
resulting  in  detecting  tomatoes  more  efficiently.

The  apple  harvesting  robot  has  a  very  effective  catching
manipulator that can reach every possible drop position in the
workspace of picking manipulator. Such design increases the
end-effector speed and accuracy and reduces the backlash for
repeatability.

The  kiwifruit  harvesting  robot  has  the  features  of  being
able  to  separate  kiwifruit,  nondestructive  picking,  and
unloading of clustered kiwifruit  in scaffolding cultivation by
the  integrated  grabbing-picking-sliding  harvesting  method.
Such  a  system  increases  the  success  rate  of  harvesting,  en-
suring  its  accomplishment  of  all  given  functions  in  kiwifruit
harvest.

With  the  reduction  of  workforce  and  the  increase  of
production costs, more research efforts and resources will be
expectedly  placed  on  the  development  of  more  advanced
automatic  harvesting  robots  in  agriculture,  especially  horti-
culture.  However,  such  development  will  require  more  close
multidisciplinary  collaboration  involved  in  many  areas,
including  agricultural  engineering,  mechatronics,  computer
science,  sensors  and  instrumentations,  deep  learning  and
intelligent systems, software development, system integration,
agronomy,  and  crop  management.  The  development  and
application of these innovative tools will significantly increase
the productivity and sustainability of modern agriculture.
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