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Abstract: Much of the demand for nitrogen (N) in cereal cropping systems is met by using N fertilisers, but the cost of production is
increasing and there are also environmental concerns. This has led to a growing interest in exploring other sources of N such as
biological N2 fixation. Non-symbiotic N2 fixation (by free-living bacteria in soils or associated with the rhizosphere) has the potential
to meet some of this need especially in the lower input cropping systems worldwide. There has been considerable research on non-
symbiotic N2 fixation, but still there is much argument about the amount of N that can potentially be fixed by this process largely due
to shortcomings of indirect measurements, however isotope-based direct methods indicate agronomically significant amounts of N2

fixation  both  in  annual  crop  and  perennial  grass  systems.  New  molecular  technologies  offer  opportunities  to  increase  our
understanding of N2-fixing microbial communities (many of them non-culturable) and the molecular mechanisms of non-symbiotic
N2 fixation. This knowledge should assist the development of new plant-diazotrophic combinations for specific environments and
more sustainable exploitation of  N2-fixing bacteria  as  inoculants  for  agriculture.  Whilst  the ultimate goal  might  be to introduce
nitrogenase genes into significant non-leguminous crop plants, it may be more realistic in the shorter-term to better synchronise
plant-microbe interactions to enhance N2 fixation when the N needs of the plant are greatest. The review explores possibilities to
maximise  potential  N  inputs  from  non-symbiotic  N2  fixation  through  improved  management  practices,  identification  of  better
performing microbial strains and their successful inoculation in the field, and plant based solutions.
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1. INTRODUCTION

Non-symbiotic (NS) N2 fixation includes N2 fixation by free-living soil bacteria (autotrophic and heterotrophic) that
are not in a direct symbiosis with plants, and associative N2-fixation (e.g. associated with the rhizospheres of grasses
and  cereals).  Free-living  N2  fixation  can  also  be  associated  with  decomposing  plant  residues,  aggregates  with
decomposable particulate organic matter and in termite habitats. A conceptual diagram of the different NS N2-fixing
possibilities and their relationship with soil N cycle is presented in Fig. (1).

Globally, the demand for N fertilisers is expected to exceed 112 million tonnes in 2015 [1] and much of this is
produced by the Haber-Bosch process [2], a process which uses large amounts of fossil fuel [3]. This, together with the
increasing demand for organically grown agricultural and horticultural products, and the need to address economic and
environmental concerns, has rekindled interest in promoting biological N2 fixation in non-leguminous crops. Nitrogen is
a critical element for sustainable agriculture but inappropriate use of fertiliser results in lower efficiency and has the
potential to contribute to (1) greenhouse gas loads such as N2O thereby contributing to climate change, and (2) leaching
of N from agricultural lands as NO-

3 causing eutrophication of rivers, lakes and oceans, and reducing the quality of
water supplies [4]. Since 1993, the use of N fertilisers in Australia has more than doubled (1.314 million tonnes of N in
2013 [5]) and more than doubled in China in the last 25 years [4]. The need to maximize the nutrient (N) inputs from
natural processes such as biological N2 fixation is greater today than ever before [6]. Recent increases in fossil fuel costs
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have resulted in significant increases in N fertiliser costs and the increased variability in rainfall patterns escalates the
risk associated with higher input costs in the rainfed farming systems. Cleveland et al. [7] estimated that the potential
global biological N2 fixation (symbiotic and NS) in natural ecosystems is between 100 and 290 million tonnes N year-1.
In soils under agricultural production, estimates of biologically fixed N range from approximately 33 million tonnes N
year-1 [8] to 50-70 million tonnes N year-1 [9].

This review summarizes the current knowledge on NS N2 fixation, including measurement techniques, factors that
control the function, ecology of N2-fixing bacteria and identifies opportunities to harness this biological process for
production and environmental benefits.

Fig. (1). A conceptual diagram highlighting the diverse set of microsites that can support N2 fixation by NS N2-fixing bacteria and its
role in the soil N cycle. (1) A diverse array of bacterial genera have been found in the rhizosphere and endophytic environment of a
variety of cereals and other crop plants; the amount of N2 fixation in the field environment is yet to be properly quantified, (2) A
significant amount of N2 fixation has been shown to occur in the below- and above-ground plant environments with sugarcane, (3)
fresh decomposing residues, especially with wide C:N ratios, provide optimal conditions for N2 fixation, (4) stable aggregates not
only provide protective sites for free-living, N2-fixing bacteria but also provide the required low oxygen conditions for nitrogenase
activity, and (5) a diverse group of microflora in termite guts and nests possess nifH genes that show potential for N2 fixation in
natural environments mainly in semi-arid and arid ecosystems.

2. CROP N DEMAND AND SUPPLY

It takes ~26 kg N to produce 1 t of wheat grain including straw [10]. Of this ~20 kg N is removed in every tonne of
grain harvested, and hence, for grain yields between 2-8 t ha-1, this represents an annual removal of 40-160 kg N ha-1

[11].  At  peak  demand  in  a  growing  crop,  N  demand  exceeds  supply  from  N  mineralisation  [10]  and  N  fertilisers
compensate for much of this shortfall.

In Australia since 2001, wheat yields averaged ~1.7 t/ha [5] and, based on the calculations above, this represents an
average annual N removal of ~ 32 kg N ha-1. N fertiliser use across Australia ranged from 0.7 million tonnes in 2003 to
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1.34 million tonnes in 2013 [5]. If biological systems could be manipulated to increase the inputs of N from NS N2

fixation it should be possible to reduce the requirement for industrially fixed N fertilisers.

Agronomically-significant  amounts  of  N2  fixation  (25-50  kg  N  ha-1  year-1)  have  been  measured  in  C4  grasses
including sugar cane [12 -  16],  but  quantification of N2  fixation associated with cereals  under natural  conditions is
limited  [12].  Kennedy  and  Islam  [17]  concluded  that  10-30  kg  N  ha-1  crop-1  could  be  fixed  by  free-living  and
rhizosphere  N2-fixing  bacteria  associated  with  wheat,  and  similar  ranges  were  indicated  by  Dart  [18]  for  cereal
production systems in temperate and tropical environments. Field measurement of N2 fixation by free-living bacteria
using cereal residues as an energy source indicated 1-12 kg N ha-1 fixed during short periods of 2-4 weeks [19 - 21], but
where warm, moist conditions coincide with fresh stubbles, annual potentials of up to 38 kg N ha-1 year-1  have been
calculated [22]. Giller and Merckx [23], on the other hand, were less optimistic and estimated that inputs from NS N2

fixation are likely to be <5kg N ha-1 year-1. Kennedy and Islam [17] calculated that, based on an average yield of straw
of 2 t ha-1 with a C content of 43%, a contribution of 50-150 kg N2 ha-1 fixed by free-living bacteria is theoretically
possible, provided that metabolism of the straw is substantially directed towards N2 fixation.

Most estimates of NS N2 fixation have been determined by indirect measures such as C2H2 reduction or calculation
from N balance. Rates of NS N2 fixation are significantly less than estimated N inputs from symbiotic N2 fixation which
range from 2 to 284 kg N ha-1 year-1 in legume pastures [24] and 0-271 kg N ha-1year-1 in grain legumes [25, 26].

Many of the measurements of NS N2 fixation were made more than 20 years ago. Since then, across the world, there
have been significant changes towards the adoption of conservation farming practices. No-tillage and stubble retention
practices  have  been  widely  adopted  [27,  28].  Farming  systems  worldwide  during  this  time  have  moved  towards
intensive cropping systems and in particular intensive cereals in Australia. These changes have resulted in increases in
productivity of more than 50% [5] with associated increases in nutrient and carbon turnover. All of these changes are
likely to have significant impacts on NS N2 fixation through the provision of larger C resources for biological activity,
and the creation and preservation of ideal soil conditions, e.g. habitable microsites for NS N2 fixation.

3. MOLECULAR ECOLOGY OF N2-FIXING (DIAZOTROPHIC) POPULATIONS

More  than  50  different  genera  of  culturable  diazotrophic  bacteria  have  been  identified  [17,  29,  30],  but  more
recently, new technologies have expanded our knowledge of NS microbial communities and their function. Molecular
technologies  utilising  analysis  of  the  nifH  gene  (a  structural  gene  encoding  for  the  highly  conserved  nitrogenase
reductase)  and  stable  isotope  (15N2)  probing  have  identified  a  suite  of  previously  unrecognised  diazotrophic
microorganisms and helped to unravel the complexity of N2-fixing communities in a range of natural and agricultural
ecosystems  (e.g.  [31  -  35]).  Varying  growth  requirements  of  a  phylogenetically  heterogeneous  group  of  N2-fixing
microorganisms have precluded cultivation of a significant proportion of these organisms. Notwithstanding this, there is
a significant body of work cited by Buckley et al. [32] which suggests that these non-culturable diazotrophs may be the
dominant components of N2-fixing communities in soils compared with their culturable cousins.

The  great  diversity  of  diazotrophic  microorganisms  ensures  the  adaptability  of  populations  of  N2-fixing
microorganisms to a wide range of conditions. This is reflected in the studies by Bürgmann et al. [36] and Zhang et al.
[37] who observed that at any one time, those organisms actively fixing N2 represented only a very small subset of the
total diazotrophic community. Recent research combining the use of isotopes with molecular studies is shedding new
light on changes in the structure of free-living N2-fixing communities in soils and relating this to function [38]. This
type of diversity analysis should help identify which members of the bacterial community are contributing to the soil N
cycle in different crops and environments.

The nitrogenase enzyme is mainly found in Bacteria and Archaea and predominantly in chemotrophs, phototrophs
and heterotrophs [33] in soils, termite guts, lakes, rivers, estuaries, algal mats and sediments and oligotrophic oceans.
This enzyme complex is encoded by nifH, nifD and nifK genes, although nifH gene has been used as the signature gene
for molecular diversity studies.  By using the nifH sequences available in public databases,  five major clusters with
homology to nifH have been described [31, 39, 40]. Gaby and Buckely [40] found that the diversity of diazotrophs,
based on nifH sequence homology, is not distributed evenly across phylogenetic groups or environments, and that the
majority of this diversity is still undiscovered, particularly in soils and in anaerobic environments. Diversity estimates
(Chao 1 richness estimates) indicated that soils account for the highest diversity of diazotroph sequences compared to
marine environments. Most diazotroph sequences from the α, β and γ Proteobacteria have been recovered from soils
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[40]. Members of the Subcluster IA (e.g. members of (Δ-Proteobacteria) account for a large portion of nifH sequences
in  some  soils  and  are  actively  involved  in  N2  fixation  [38].  Gupta  et  al.  [41]  found  that  members  belonging  to  α-
proteobacteria  or  Cluster  Ik/j  were  the  most  abundant  group  in  Australian  wheat  fields.  They  suggested  that  on  a
continental scale, habitat and environment determine the composition of the diazotrophic community, while plant type
and management associated factors drive the composition, genetic potential and NS N2 fixation regionally and within
fields.

The use of nifH gene analysis, using nifH amplicon sequencing and nifH microarray methods, of isolated organisms
and entire N2-fixing microbial communities at the plant interface (rhizosphere, rhizoplane, and phyllosphere) have all
shown that the nifH gene is widely distributed in phylogenetically diverse groups of bacteria and archaea [31, 33, 37,
40] and that a large contingent of these organisms is non-culturable, e.g. in the rhizosphere of graminaceous plants [32,
34, 42].

Other associations of N2-fixing bacteria with plants can be endophytic - both obligate and facultative (e.g. [35, 42 -
45]), but whether their relationship with the plant is symbiotic or NS is uncertain [45]. Endophytic bacteria are at an
advantage compared with free-living or rhizosphere bacteria because they have ready access to carbon (energy source)
nutrients and water from within the plant [46] and are not vulnerable to competition from other microorganisms in the
rhizosphere or soil. Therefore, such organisms are more likely to be successful as inoculants. As with non-endophyte
diazotrophs,  non-culturable  N2-fixing  microorganisms  appear  to  be  dominant.  From  phylogenetic  analyses  of
nitrogenase  sequences,  Hurek et  al.  [42]  predicted that  non-culturable  grass  endophytes  (such as  Azoarcus  sp.)  are
ecologically dominant and could play an important role in N2 fixation in natural grass ecosystems.

Termites and termite habitats are important components of soil food webs contributing to soil N cycle in rangelands
and low rainfall regions in Australia, Africa and India. Molecular analysis using nifH PCR primers has extended our
understanding of the diversity of N2-fixing communities in guts of termites that feed on cellulose substrates [31, 47, 48].

4. MEASUREMENT/QUANTIFICATION

Current methods of quantifying NS N2 fixation are far from perfect and measurement may be flawed if inappropriate
techniques or inadequate controls are used. However, used appropriately, these techniques can provide some valuable
insight into the role and importance of NS N2 fixation. New molecular technologies promise further advances and this
will be addressed later in this review. Advantages and disadvantages of current techniques and their appropriate use are
described here briefly.

4.1. C2H2 Reduction Assay

The C2H2 reduction assay (based on the reduction C2H2 to C2H4 by nitrogenase) is a rapid, sensitive, simple and low
cost method which if used with appropriate controls and calibrations can be useful for evaluating nitrogenase activity in
time and space [49]. Under controlled conditions it can be extremely useful for comparative purposes where absolute
values of N2 fixation are not critical. Hardy et al. [50] found a direct correlation between N2 fixation (N2→2NH3) and
C2H2→C2H4  in pure cultures of diazotrophs and in legumes, and calculated that the theoretical relationship of C2H2

reduced to N2 fixed was 3. However, measured values of conversion factors in different environments can vary widely;
these are summarized in Table 1.

Such  variations  in  ratios  of  C2H4  produced  to  N2  fixed  have  been  the  basis  of  most  criticism  of  the  acetylene
reduction assay, although research has shown that for all systems including pure cultures, legumes, non-legumes and
soils  that  this  ratio  averaged  between  2.6  and  6.9  [51].  The  only  exception  to  this  was  anaerobic  soil  which  had
conversion factors of up to 25. Under other conditions a reasonable estimate is possible, although any experimental
procedure should always include a calibration of the assay using 15N2 gas exposure [52 - 54].

4.2. Use of 15N2 Gas as a Direct Measure of N2 Fixation

This method can be sensitive, accurate and provide absolute proof of N2 fixation and has been used to demonstrate
N2  fixation associated with cereals and grasses [41, 55, 56] and in soils [19, 56, 57]. It is a most useful method for
calibrating  other  measures  of  N2  fixation.  Although  difficulties  in  controlling  environmental  conditions  can  be
encountered when using the method to measure N2  fixation associated with plants,  it  has been successfully used to
estimate N2 fixation with cereals and sorghum [55, 56].
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Table 1. Different values used for conversion factor from acetylene reduced to N2 fixed

Source Conversion factor Reference
Theoretical average 3 or 4 Hardy et al. [51]

Jenson and Cox [192]
Legumes, non-legumes and soils 2.6 - 6.9 Hardy et al. [51]

Anaerobic soil 25 Hardy et al. [51]
Suspensions of bacteria 2-8 - 4.7 Hardy et al. [51]

Montoya et al. [193]
Overall range 0.56 - 22 Boddey et al. [59, 61]

Anabaena (17.3 oC) 3.96 Liengen [111]

Anabaena (14.0 oC) 4.88 Liengen [111]
   Cyanobacterial crusts 0.0216-0.073
   Nostoc community 0.11-0.48

Sub-alpine meadow & coniferous forest 7.5 Skujins et al. [194]
Saline soils 2.1 - 2.8 Zechmeister-Boltenstern and Kinzel [195]
Peat soils 5.4 Zechmeister-Boltenstern and Kinzel [195]

Grassland, wheat fields, fallow 3.1-8.6 Steyn and Delwiche [52]
Forest soils Nohrstedt [196]

   Low water (75% of water saturation) 2.6
   High water (100% water saturation) 15.7

Forest soils 1.6-5.6 Nohrstedt [197]
Decomposing litter 3.9 Vitousek and Hobbie [198]
Coastal sediments 0.11 - 94 Seitzinger and Gaber [199]

Note: It has been suggested that conversion factors >4 may be associated with higher solubility of acetylene whereas < 3 values are attributed to the
nutritional N limitation caused by incubation with acetylene [200, 201].

Demonstrating the incorporation of 15N2 into free-living microbial populations in the soil is much more difficult.
While  N2  fixation  in  soils  was  confirmed  both  in  the  laboratory  and  in  the  field  by  incorporation  of  15N2  [19,  41],
absolute measures of N2 fixation in the field using 15N2 gas are costly and are influenced by seasonal factors (M. M.
Roper, G. L. Turner, F. J. Bergersen, unpublished data; [58]). Many free-living, diazotrophic bacteria require reduced
oxygen concentrations to fix N2  and are located within microsites of low oxygen tension. Sites that restrict  oxygen
availability may also limit access by 15N2 and this could result in an underestimation of N2 fixation.

4.3. 15N Isotope Dilution and Natural Abundance (δ15N) to Measure Associative N2 Fixation

Both 15N isotope dilution and natural abundance methods depend upon differences in isotopic composition of the
sources of N used for plant growth, i.e. atmospheric N, soil N and fertiliser N. Both methods require a non-N2-fixing
reference plant and therefore it is essential that the reference plant and the test plant with associative N2 fixation have a
similar root architecture and can extract N from the soil at the same rate in space and time [59]. Neither 15N method is
suitable  for  quantification  of  the  total  amount  of  N2  fixation  by  free-living  bacteria  because  of  the  difficulty  of
separating N2-fixing microorganisms from the soil for 15N analysis.

The 15N isotope dilution technique involves supplying a 15N enriched (or depleted) source of N to the soil so that it is
significantly different from the natural abundance of the atmospheric N2 [59, 60]. For accurate measurement, the spatial
and temporal  availability  of  the  isotope should  be  uniform [60].  The 15N isotope dilution method has  been used to
estimate N2 fixation associated with sugar cane, forage grasses, cereals and actinorhizal plants grown in soil, mostly in
tropical systems.

The natural abundance (δ15N) method is exactly analogous to the isotope dilution method except that endogenous
15N in the soil is used [61, 62]. The natural abundance method has an advantage over isotope enrichment methods in
natural ecosystems because disturbance of the system is unnecessary [62], but other factors can affect δ15N in plants,
such as N from precipitation (NOx, NH3), the depths in the soil from which N is taken up and the form of soil N that is
used (organic N, NH4

+ or NO3
-) [63]. The ability of the natural abundance method to measure associative N2 fixation

depends on N2 fixed by associative microorganisms being predominantly taken up by the plant rather than going into
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the soil N pool [62]. Application of the 15N natural abundance technique in oil palms in the field in Brazil identified
diazotrophs with a high potential for N2 fixation, but estimates of N2 fixation could not be calculated because of the
absence of a suitable reference plant [64] highlighting a significant limitation of this method.

4.4. N Budget (N2 Fixed by Difference)

Giller and Merckx [23] suggested that the ultimate test of the contribution of N from fixation is to measure net
inputs of N over long periods (>10 years) in the field, i.e. an N budget. However, this may be difficult as it requires
measuring  all  inputs  and  outputs  of  N  over  this  period,  including  inputs  from  fertilisers,  wet  N  deposition,  dry  N
deposition, run-on and uptake from lateral flow, outputs from crop/animal removal, gaseous losses, N leaching and soil
erosion. A number of studies using long-term field experimental data have shown considerable N gains which were
attributed to inputs from NS N2 fixation (for example [18, 22, 65 - 67]).

In the Rothamsted Broadbalk experiment, during the period from 1852-1967, Jenkinson [68] calculated that inputs
from N2 fixation were between 18-28 kg N ha-1 year-1 in a plot that received no fertiliser, and 23-35 kg N ha-1 year-1 in a
plot that received inorganic fertiliser without N. These estimates were obtained after adjusting for wet deposition from
rainfall (5 kg N ha-1 year-1), dry N deposition (10 kg N ha-1 year-1) and for inputs in the seed (3 kg N ha-1 year-1) all of
which were measured at some time during the course of the experiment [68]. Estimates indicate N deposition in rainfall
and dust may range between 3-5 kg N ha-1 year-1 over much of Africa and Australia, and 10-50 kg N ha-1 year-1 in more
densely populated areas such as in Europe [23, 69].

To achieve a reliable N balance it is necessary to have a very high repeatability and accuracy of N measurements
through strict sampling protocols and extremely high sample numbers to enable the mean soil N to be precise enough to
determine statistically significant changes in soil N [70, 71]. From a scientific viewpoint, N balance studies only give an
indirect  measure of  N gains due to NS N2  fixation which can be useful  for  supporting other  more direct  measures.
However,  from  a  grower’s  perspective,  statistically  significant  measures  of  N  accumulation  provide  valuable
information  for  planning  N  fertiliser  inputs  for  a  crop.

4.5. Use of Multiple Techniques and New Methods

Used in conjunction with other measures such as the C2H2 reduction assay, N budgets may increase the certainty of
estimates. For example, Shearman et al. [72] found that in grass pastures inoculated with a range of known N2-fixing
bacteria,  rates  of  C2H2  reduction  were  strongly  correlated  (r=0.92)  with  N accumulation  measured  by  the  Kjeldahl
method. 15N aided N balance studies have been used to strengthen evidence for associative biological N2 fixation in
sugar cane [65, 73, 74], where there was good agreement between estimates of biological N2 fixation from N balance
and isotope dilution. However, the authors were careful not to assume the same rates of fixation occurred in the field
because the conditions of the experiment differed from those in the field [73].

Much of  the  information  on  estimates  of  N2  fixation  using  techniques  that  are  currently  available  apply  to  one
instant in space and time or over a short period of assay [58]. However, knowledge of the conditions that favour N2

fixation and the rates at which fixation responds to changes in environmental conditions can be used to obtain estimates
for  a  wider  region  if  environmental  conditions  in  those  regions  are  known  (e.g.  meteorological  records;  cropping
statistics and soil maps). Gupta et al. [22] used this principle to derive estimates for parts of the southern agroecological
zones of Australia. Using information from other studies on the effects of different soil moistures, temperatures and
carbon sources, potential N2  fixation in different zones was determined using a spatial analytical tool (ArcviewGIS
Spatial Analyst, v3.1). Use of this principle with a range of measurement strategies may provide useful information
about regions that are most likely to benefit from NS N2 fixation and where new advances can be made.

New techniques using microarray technologies have the potential to simultaneously measure the dynamics and/or
activities of most microbial populations in the complex soil environment [75, 76]. Zhang et al. [37], used a nifH-based
short oligonucleotide microarray and showed that this technique allows quantification and mapping of the abundance,
diversity and activities of N2-fixing populations. This approach is likely to assist in the identification of regions and
managements  that  favour  inputs  of  N  from NS N2  fixation.  With  the  availability  of  complete  genomes  for  several
diazotrophic rhizobacteria and our increased ability to conduct in-depth genomic and functional analysis of candidate
genes, we can now interrogate the specific features of diazotrophic endophytes. Such information on the molecular
mechanisms of NS N2  fixation should enable the development of agronomic options to improve N2  fixation in non-
leguminous crops [77].
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5. FACTORS AFFECTING NS N2 FIXATION

5.1. Soil and Environmental Factors

Edaphic,  environmental  and  management  factors  have  a  significant  impact  on  the  composition  of  diazotrophic
communities  and  potentially  their  function  [41,78,  79].  Varietal-based  differences  in  the  diversity  of  diazotrophic
communities have been reported for wheat, barley, rice, sorghum [80 - 82] and perennial grasses [41]. Differences in
soil environments at the micro-scale can also influence the composition of diazotrophic communities [83].

Nitrogenase  proteins  are  extremely  sensitive  to  O2  and  on  exposure  to  air  they  are  rapidly  and  irreversibly
inactivated [84]. Therefore, NS N2-fixing bacteria need mechanisms to exclude O2 for N2 fixation (nitrogenase activity)
to occur. Some bacteria, e.g. Azotobacter, Azomonas, Beijerinckia and Derxia exclude O2 through rapid respiration or
the formation of extracellular polysaccharide [29, 85]. However, most culturable diazotrophic bacteria will only fix N2

under microaerophilic or anaerobic conditions [29]. Anaerobic conditions can be created by saturating soil moistures
and substantial  amounts of N2  fixation have been measured under these conditions [86].  In aerated soils,  aggregate
formation  in  the  soil  allows  microaerophilic  and  anaerobic  conditions  to  coexist  simultaneously  under  aerobic
conditions.  Furthermore,  substrates  such  as  dissolved  organic  C  can  be  allocated  into  both  aerobic  and  anaerobic
fractions and processes [87] and so, it is possible for soluble products from organic matter decomposed under aerobic
conditions, to supply C energy to microaerophilic and anaerobic N2-fixing bacteria within aggregates.

The second major condition required for NS N2 fixation is the availability of C as an energy source. Free-living N2-
fixing  bacteria  generally  rely  on  decomposing  plant  material  above  and  below  ground  from  crops  and  pastures.
Associative N2-fixing bacteria utilise root exudates within a rhizosphere association with plants and other organisms. In
both environments, other microbial groups compete for limited energy resources. Endophytic N2-fixing bacteria, on the
other hand, have ready access to C and nutrients from within the plant [46].

Crop residues contain cellulose and hemicellulose which comprise 50-70% of its dry weight [88]. A few species of
N2-fixing bacteria (Azospirillum spp.) are able to use straw directly for fixation [89], but most N2-fixing bacteria rely on
decomposition to smaller components by other organisms [90]. Almost all N2-fixing heterotrophic bacteria are able to
utilise the products of cellulose decomposition including carbohydrates and some organic acids and alcohols [91, 92].
Rates of N2 fixation are proportional to the amount of crop residue available and to rates of decomposition [19]. The
retention of crop residues can alter the composition of diazotrophic community structure, increase nifH gene abundance
and N2 fixation [82, 93, 94]. Root exudates, e.g. carbon containing compounds and quorum-sensing compounds, have
been shown to influence the composition and function of nifH communities in the rhizosphere, and N2 fixation rates of
4-20 kg N ha-1  year-1  were predicted by Jones et al.  [95]. Gupta et al.  [41] observed a plant-based selection of nifH
communities in the root environments of different summer-active perennial grass species. They found that diversity of
diazotrophic bacteria was significantly higher in the rhizosphere than in the roots and that both the rhizosphere and
roots supported higher N2 fixation than in cropping soils during summer.

It is well known that inorganic mineral N in soil can inhibit N2 fixation by NS microorganisms [96]. However, the
dynamics  of  N2-fixing microbial  populations  are  linked to  available  C:N ratios.  For  example,  when C is  abundant,
excess ammonium N can be assimilated by other microbial populations allowing N2 fixation to occur, but with low C,
excess ammonium N concentrations inhibit N2-fixing populations [97]. In the presence of large amounts of crop residue
with wide C:N ratios, decomposition can be slow. But the addition of N increases the rate of decomposition (making C
available for use by N2-fixing bacteria [30, 90]. Other mineral nutrients may influence NS N2 fixation. Mo and Fe are
components of the nitrogenase enzyme, but they are rarely limiting in natural environments [98]. On the other hand,
applications of P can significantly increase NS N2 fixation in crops [99, 100] and in grasslands [101, 102] particularly in
nutrient poor soils. Reed et al. [99] and Smith [100] concluded that the strong inverse relationship between N2 fixation
and mineral N content in the soil is mitigated by the availability of P.

High soil water contents have been used to promote N2 fixation in soils by reducing O2 at the sites of fixation [86].
However, in unsaturated soils, it is important to maintain aggregate structure and O2 gradients. In disturbed soils in the
laboratory, a minimum of 50% water holding capacity was required for nitrogenase activity [103], whereas in in situ
assays in undisturbed soils in the field, nitrogenase activity occurred at soil water contents below 30% water holding
capacity  [19].  In  some environments,  N2-fixing  bacteria  have  adapted  to  harsh  semi-arid  environments  e.g.  lichens
(containing cyanobacteria or other free-living bacteria in association with a fungus) [104, 105] and rhizosheaths around



14   The Open Agriculture Journal, 2016, Volume 10 Roper and Gupta

the  roots  of  perennial  grass  species,  and  can  contribute  significant  amounts  of  biologically  fixed  N  [106,  107].
Rhizosheaths  support  enriched  organic  materials,  greater  water  contents  and  a  higher  density  of  microorganisms
including associative diazotrophs [106] and up to 9 kg N ha-1 year-1 has been measured [108].

N2 fixation has been shown to occur in situ in temperature extremes from near 0oC in Antarctica [109, 110] and in
the Arctic [111] to desert environments where N2-fixing bacteria utilise morning dew or summer rains [105] but must
survive  during  intervening  hot  dry  conditions  up  to  60oC  [98].  Laboratory  experiments  indicated  that  the  most
favourable temperatures for N2 fixation were between 30 and 35oC, with a range from 4-45oC [103]. The variation for
the best  temperature range for activity may depend upon the organisms present and the climatic conditions at  each
environment [98, 103].

Soil characteristics can significantly alter the potential for NS N2 fixation. For example, nitrogenase activity by free-
living bacteria extracted from soil is best at pH 7-7.5 regardless of the pH of the original soil [112], and liming can
increase the abundance of nifH-containing rhizobacteria in acidic soils [94]. Clays are highly reactive colloidal particles
that interact strongly with microorganisms [113]. Roper and Smith [112] observed that the presence of montmorillonite
clay increased N2 fixation by free-living bacteria. Clays increase macroaggregate formation [114] which creates sites of
low O2 concentration [115] thus favouring N2 fixation. Microsites within intra-aggregate pore spaces and interior parts
of  aggregates  not  only  provide  suitable  environments  for  nitrogenase  activity  but  also  protect  bacteria  from
environmental extremes [116]. Although halophilic bacteria (e.g. Halomonas maura) isolated from saline soils have
been shown to contain nifH genes and fix N2 [117], there is little other information on the impact of salt on NS N2-fixing
bacteria in terms of growth and N2 fixation [118] particularly in agricultural soils.

Heavy metal (Zn, Cu, Ni, Cd, Cr, Pb, Hg, As) contamination can reduce abundance of NS N2-fixing bacteria [119,
120] and N2-fixing activity [121]. However, some strains of Azospirillum brasilense showed adaptation to heavy metals
(Co, Cu and Zn [122]). The response of associative N2 fixation to heavy metals seems dependent on the tolerance of the
plants themselves to the contaminant [123]. For example, roots of aluminium-tolerant plants exude significantly higher
amounts of low molecular weight dicarboxylic acids which not only chelate Al3+ protecting the plant, but are also C
sources for Azospirillum spp. and other N2-fixing bacteria [36, 91].

5.2. Management Practices

Minimum tillage systems support the stability of the aggregates especially macroaggregates that are critical for the
development and maintenance of microsites of reduced O2 tension and for protection against biocidal exposure [116].
Any increase in soil disturbance reduces aggregation, reduces soil C and disrupts the soil pore network by which soil
organisms interact [124 - 126]. As a result of all these factors, NS N2 fixation under no-till is characteristically higher
than in cultivated soils [126]. However, biological changes in NS N2 fixation in response to adopting reduced/no- tillage
practices can be slow sometimes taking several years to develop [20, 116, 127].

In no-till systems, populations of soil macrofauna such as ants (and termites) and earthworms are generally more
abundant [126]. Significant amounts of N2 fixation can occur in the guts of earthworms [128], termites [129, 130] and
arthropods [131], e.g. 4-10 kg N ha-1 year-1 [131, 132]. Crop rotations can profoundly modify the soil environment by
influencing the removal of nutrients from the soil, return of crop residues (including quality and quantity), development
and  distribution  of  bio-pores,  and  dynamics  of  microbial  communities  [133]  and  therefore,  are  likely  to  affect  the
potential for N2 fixation. Information on the impact of pesticides on NS N2 fixation is relatively sparse and the effects
are  mixed.  Among  the  pesticides,  herbicides  appear  to  have  least  significant  effects  on  soil  organisms,  whereas
insecticides and especially copper fungicides can be quite toxic [134]. Fungicides (methyl N-(1H-benzimidazo-2yl)
carbamate  and  tetramethylthiuram  disulfide)  [135]  and  the  herbicide  glyphosate  [136]  have  been  shown  to  have
negative  impacts  on  the  abundance  of  diazotrophs,  whereas  other  studies  indicated  stimulation  of  populations  and
activities of N2-fixing bacteria, e.g. with the insecticide (hexachlorcyclohexane) [137] and a range of herbicides [138].

Associative N2 fixation has been suggested to be under the genetic control of the host plant [12, 139]. Differences in
associative N2 fixation have been observed between different lines of rice [140], wheat [82, 141], maize and sorghum
[142,  143],  millet  [144],  and  among  various  species  of  grasses  [41,  145]  and  weeds  [146].  Characteristics  which
contribute to high N2-fixing genotypes include a reduced transpiration rate, lower numbers of stomata and increased
root exudates with a high concentration of dicarboxylic acids [143, 147]. Wood et al. [148] suggested that plants with
an increased release of photosynthate to the rhizosphere should be a priority for the future development of broad-acre
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agricultural systems that are more self-sufficient for N nutrition.

6. TRANSFER OF FIXED N FROM DIAZOTROPHS TO PLANTS AND OTHER ORGANISMS

The  transfer  of  N  fixed  to  plants  is  likely  to  depend  on  the  location  at  which  N2  fixation  occurs.  Endophytic
diazotrophs can supply biologically fixed N directly to the host [149], e.g. N2 fixation by endophytic bacteria associated
with  sugarcane  can  directly  contribute  more  than  half  the  crop’s  N  requirement  [65,  150].  Because  endophytic
diazotrophs have only been observed in intercellular spaces, vascular tissue, aerenchyma and dead cells and not within
living host cells, James [45] suggested that N transfer from these organisms is likely to be dependent on their death and
release of fixed N. Transfer to plants of N fixed by diazotrophs or N contained in non-fixing microbial biomass in the
soil or rhizosphere is also likely to be dependent on the death of these bacteria and release of ammonium or amino acids
[151, 152], although excretion of nitrogenous substances during bacterial growth can also occur (e.g. Beijerinckia derxii
[153]; cyanobacteria [154]).

In rhizosphere associations, N fixed can either be directly taken up by the plant or remain in the surrounding soil N
pool (Fig. 1). There is little information about the proportions of N transfer to each of these pools. However, transfer of
fixed N to plants from associative N2-fixing bacteria has been demonstrated using 15N2 by Giller et al. [55, 155] and
others reviewed by Boddey [156] and James [45].  Release of N following the death of diazotrophic bacteria in the
rhizosphere can be rapid due to wetting and drying cycles and microbial predation.

7. ENHANCING THE VALUE OF NS N2 FIXATION – A WAY FORWARD

Kennedy and Islam [17] expressed an optimism that up to half the N requirements of some cereal crops might be
met from NS N2 fixation in the future through the use of genetic tools and inoculant biofertilisers. In addition, Beatty
and Good [6] proposed two other strategies (1) developing root nodule symbioses in important cereal crops such as
wheat, rice and maize and (2) introducing nitrogenase genes into a plant organelle.

7.1. Inoculation

There have been many studies on inoculation with N2-fixing bacteria of non-legumes (predominantly cereals and
grasses),  with  reported  above-  and  below-ground  increases  in  total  plant  growth  and  N  content  [157].  The  most
successful inoculation responses have been in pot trials under controlled conditions (e.g. [158 - 161], but inoculation
experiments in the field have been less consistent [162]. Andrews et al. [163] concluded that currently no NS N2-fixing
bacterial inoculant is available that can match the consistency of N fertilisers for reducing soil N deficiencies.

One  of  the  difficulties  of  inoculating  soils  with  bacteria  is  that  the  inoculants  generally  decline  rapidly  due  to
competition with the native microflora [164, 165]. Inoculants compete with other microflora for available nutrients or
become  food  for  indigenous  micro-  and  macro-fauna  [166].  Hence  the  ultimate  test  for  even  the  most  effective
beneficial  organism is  the ability to survive and colonise plant  roots  in the presence of  much larger populations of
indigenous microorganisms [157]. Inoculum formulation and application technology, e.g. along with organic matter
(compost or peat) or micro-granulated inoculum, are likely to be crucial for inoculant survival and success [167].

7.1.1. Endophytes and GMOs

Endophytes  are  more  likely  to  be  successful  inoculants  because  they  can  escape  competition  from  indigenous
microflora and can directly access the required energy source from the plant. Increased success with endophytic N2-
fixing  inoculants  may  be  possible  through  genetic  manipulation.  For  example,  An  et  al.  [168]  suggested  that
manipulation of the promoter of the nifA gene in a N2-fixing bacterium that has a high colonisation competence may
achieve stable associative N2 fixation in cereals. A similar approach has been put forward by Bloemberg [169]. Other
advances using molecular strategies may be possible, e.g. the creation of ammonium excreting mutant diazotrophs, in
which the mechanisms by which ammonium inhibits N2  fixation, are disarmed [170] or the increased production of
nitrogenase reductase such as in an Azospirillum brasilense mutant [171]. However, the survival of such mutants in the
field is uncertain [45].

7.1.2. Inoculants With Dual Benefits

Greater benefits may be possible where inoculants have a dual benefit through increased N nutrition via N2 fixation
coupled with the production of plant growth hormones. There are several groups of organisms that are known to fix N2,



16   The Open Agriculture Journal, 2016, Volume 10 Roper and Gupta

produce phytohormones and/or provide protection against fungal and bacterial pathogens [171 - 173]. Hafeez et al.
[174] showed that amongst 17 rhizobacteria isolated from different ecological regions, 15 fixed N2 and all produced
various  concentrations  of  indole-3-acetic  acid,  and  at  least  one  of  the  isolates  produced  siderophores.  Some
actinobacteria (Microbacterium sp., Micromonospora sp. and Arthrobacter sp.) contain nifH genes and fix N2 [82, 175],
but  can  also  colonise  cereals  as  endophytes  where  they  promote  plant  growth  via  phytohormone  production,  and
suppress multiple root pathogens [176].

7.1.3. Co-Cultures

Combinations  of  cellulolytic  microorganisms  and  N2-fixing  bacteria  have  been  studied,  mostly  in  controlled
environments, to understand the synergy between each group of organisms. For example, Veal and Lynch [177, 178]
found that mixed cultures of the cellulolytic fungus Trichoderma harzianum and the N2-fixing bacterium Clostridium
butyricum co-operatively degraded cellulose and used the degradation products to fix N2 equivalent to 7.87 mg N fixed /
g C lost.  A similar rate (12 - 14.6 mg N fixed / g cellulose consumed) was measured with cellulose containing co-
cultures of Cellulomonas gelida and Azospirillum lipoferum or A. brasilense or Bacillus macerans [179]. With wheat
straw and the same organisms, these authors measured 17-19 mg N / g straw consumed, a value not dissimilar to that
found by Lynch and Harper [180] (11.5 mg N / g straw lost) for a Penicillium corylophilum – Clostridium butyricum
association. However, in co-cultures of a mutant strain of Cellulomonas sp. (strain CS1-17) and Azospirillum spp. with
cereal straw, Halsall and Gibson [181] measured much larger rates of fixation (72 and 63 mg N / g straw utilised) which
concurs with the theoretical upper limit of 75 mg / g straw calculated by Kennedy and Islam [17]. Halsall and Gibson
[181] attributed these vastly increased rates to the efficiency of the mutant strain of Cellulomonas sp. (strain CS1-17)
and to low background N levels in the experiment.

Co-culture inoculants of cellulolytic organisms and diazotrophs are unlikely to confer great benefits in the field
because of the high diversity of cellulolytic organisms that occur naturally in the soil (e.g. [182 - 184]). The exception
to this might be soils that have not had a history of significant carbon inputs and cellulolytic populations are not well
developed.  Combining  enhanced  cellulolytic  capability  with  nitrogenase  activity  in  the  same  organism is  likely  to
increase the efficiency of transfer of energy to N2 fixation, but so far efforts to achieve this have not been demonstrated.

7.1.4. Non-culturable Microorganisms

The  finding  that  non-culturable  bacteria,  including  members  of  Betaproteobacteria  and  Actinobacteria,  may  be
dominant N2-fixing microorganisms [32, 34, 42, 140] requires the development of tools to culture them in order to
develop  effective  inoculants.  Advances  in  culturing  technology  (e.g.  Janssen  [185])  including  sequence-directed
isolation of novel bacteria offer new hope to identify functionally important bacteria suitable for specific crops and
environments.

7.2. Management Combinations

Development of combinations of management practices should maximize NS N2 fixation. Cropping systems which
combine high C inputs and good soil structure, e.g. conservation farming practices or perennial grass systems, are likely
to be ideal. No-tillage practices combined with crop residue retention have increased rapidly world-wide in response to
a range of pressures, and by 2003 for example, it was estimated that in Western Australia, 86% of farmers had adopted
no-tillage [28]. Many of the field studies on NS N2 fixation in the past were done with soils where stubble retention had
recently been adopted (e.g. [19]). Soil microbial composition and functions respond slowly to changed managements
[116] and therefore it is likely that if similar experiments were conducted today on sites with long-term no-tillage and
crop residue retention, different rates of N2 fixation might be found, particularly in areas under continuous cropping.

A system which supports 100% ground cover 100% of the time is likely to provide continuous inputs of C either by
rhizodeposition or by inputs from above-ground residues. In ‘pasture-cropping systems’ where native summer-active
perennial grasses are coupled with winter cereals it is proposed that biological N inputs are sufficient to supply the
needs of the cereal crop. Using δ15N techniques, Mordelet et al. [186] and Abbadie et al. [187] were able to identify
contributions  from  NS  N2  fixation  of  up  to  17  %  of  the  annual  savannah  requirement  for  N.  In  pasture-cropping
systems, fixed N is likely to be protected from leaching losses due to uptake by the grasses in autumn and later release
by mineralisation from stubble and decomposing roots to a cereal crop during winter when the grass is not active [188].
Further research is needed to understand the N dynamics of pasture-cropping systems and to evaluate their potential in
agriculture.
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Little is known about the potential for N inputs via N2 fixation with other plants including weeds and other non-
legume components of pastures except for a small  study by Conklin and Biswas [146] who observed NS N2-fixing
bacteria and nitrogenase activity (C2H2 reduction) associated with 20 weed species.

7.3. Plant Based Solutions

Only in Brazil are there varieties of sugar cane that have been shown to fix over 60% of their nitrogen (>150 kg N
ha-1 year-1 [65]). Elsewhere in the world, measurements of contributions to N supply in sugar cane via biological N2

fixation have been small [189] although specific associations between diazotrophic bacteria and sugar cane have been
observed [190]. It has been argued that this may be due to sugar crops in Brazil being systematically bred for high
yields with low fertiliser inputs [65, 150]. Baldani et al. [150] suggested that such a breeding process with low fertiliser
inputs has led to the development of (or preserved) an effective association between N2-fixing bacteria and the plant.
Almost  all  of  our  modern  crop  varieties  have  been  developed  in  conjunction  with  the  use  of  nitrogen  fertilisers
suggesting  that  the  capacity  for  significant  associative  N2  fixation  may  have  been  lost  during  breeding  processes.
Therefore, examination of the capacity for associative and endophytic N2 fixation in the wild relatives of wheat and
other cereals, and the possibility of transferring this capability into modern varieties may have merit. Support for this
notion can be seen with rice, for example Knauth et al. [140] examined the composition of diazotrophic communities
associated with related rice cultivars (Oryza sativa) and wild species (Oryza brachyantha) and found that when grown
under identical conditions in the same soil without N fertiliser there were remarkable differences in root associated
nifH-gene  expressing  communities  between  the  two  cultivars.  Furthermore,  NifH  fragments  expressed  in  the  wild
species  of  rice  roots  indicated  that  the  active  diazotrophs  were  not  related  to  cultured  strains.  In  a  separate  study,
Engelhard et al. [191] found that endophytic populations of diazotrophs differed with rice genotype and that the natural
host  range of  the  non-culturable  Azoarcus  spp.  included rice,  with  wild  and old  rice  varieties  being preferred  over
modern  cultivars.  On  the  other  hand,  culturable  species  such  as  Azospirillum  spp.,  Klebsiella  sp.,  Sphingomonas
paucimobilis, Burkholderia spp. were associated with more modern cultivars of Oryza sativa.

Evidence that ecosystems with low N promote NS N2 fixation occurs in a perennial grass (Molinia coerulea) which
grows in oligotrophic environments. In another example, Gupta et al. [41] reported diazotrophic N2 fixation of 0.92 to
2.35 mg N / kg root / day with summer active perennial grasses such as Panicum species and Rhodes grass (Chloris
gayana)  in low organic matter  soils  of  southern Australia.  Hamelin et  al.  [34] observed that  the rhizosphere of the
perennial grass Molinia coerulea supported a diversity of N2-fixing bacteria, 56% of which contained NifH sequences
that did not match any cultivated diazotrophs, but were dominant in the roots and surrounding soil. Further examination
of such oligotrophic systems may yield diazotrophic communities that could be adapted to agricultural systems where
they might increase the contribution from associative N2 fixation in agricultural crops.

SUMMARY

There is a range of estimates for NS N2 fixation in different cropping systems. A number of reviews suggest that
significant amounts of N2 fixation (>30-40 kg N ha-1 year-1) are possible with C4 grasses including sugar cane in tropical
regions (e.g.  [12]), and where sugar cane has been bred with low N fertiliser inputs >150 kg N ha-1  year-1  has been
measured [65]. Estimates in temperate and Mediterranean regions are less certain and range from 10-30 kg N ha-1 crop-1

[17, 18] to less than 5 kg N ha-1 year-1 [23], but it is likely that differences in methodology including application of
individual methods have contributed to some of the reported variability. Environmental and management factors play an
enormous  role  in  the  contribution  of  N from this  beneficial  microbial  function.  New technologies  using  molecular
approaches, particularly when combined with isotope methods, are broadening our understanding of NS N2 fixation, and
the molecular mechanisms of plant-diazotroph interactions. Microarray, pyrosequencing and Stable Isotope Probing
(SIP) technologies offer an opportunity to investigate simultaneously both the diversity and function of diazotrophic
microbial communities, and this may lead to the discovery of currently non-culturable bacteria that are functionally
significant.

Generally there is a good understanding of the environmental factors controlling NS N2 fixation and this can be
helpful in designing farming systems that promote N inputs from fixation, but most estimates of N2 fixation, particularly
in the field were determined more than 20 years ago. Since then, farming practices have evolved towards intensive
cropping (particularly with cereals), no-tillage and stubble retention, and further evaluation in terms of quantity of N
fixed and identity of significant members of the N2-fixing community is needed. Similarly, alternative systems such as
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‘pasture-cropping’ that benefit from N2 fixation associated with perennial grasses could be explored.

Further gains may be possible through inoculation with highly efficient N2-fixing bacteria particularly if they have
the additional capacity to promote plant growth. However, the ultimate test for even the most beneficial inoculant is to
be able to survive in soil and colonise plant roots. Inoculation with bacteria that can form an endophytic relationship
within the plant (either in below-ground and/or above-ground parts) may increase the potential for success. However,
many effective diazotrophic bacteria remain non-culturable and this may limit our ability to exploit them as inoculants
unless  new  culturing  techniques  can  be  developed.  New  research  using  molecular  techniques  will  reveal  the  true
diversity of diazotrophic bacteria in agricultural and natural ecosystems and their potential to be used as inoculants in
agricultural systems. Additionally, co-occurrence network analysis using nifH sequence data indicated the presence of
complex co-occurrence patterns in the free-living diazotrophs than that known in symbiotic diazotrophs [202]. Such
novel insights in to the ecology of diazotrophs may lead to development of inoculant mixtures that promote overall N2

fixation. Re-introduction into modern varieties of traits that promote the colonisation of highly efficient diazotrophic
populations should further contribute biologically fixed N to agricultural systems, particularly in non-leguminous crops.
Finally, NS N2 fixation provides an attractive option as an environmentally responsible alternative fertiliser source for
sustainable food production, especially in lower organic matter and low fertility soils worldwide.
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