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Abstract: Rice blast disease occurs in rice production areas all over the world and is the most important disease in Japan. Remote
sensing techniques may provide a mean for detecting disease intensity for large area without being subjected to raters. This study
evaluated the use of airborne hyperspectral imagery to measure the severity of panicle blast in field crops. Hyperspectral remote
sensing imagery was acquired at the dough stage of rice grain development in northern Japan. The most consistent relationship, with
high  R2  and  low P,  was  the  simple  band  ratio  R498  to  515/R700  to  717  (i.e.,  the  reflectance  at  498  to  515-nm divided  by  the
reflectance at 700- to 717-nm). The band ratio of R498 to 515/R700 to 717 increased significantly (P < 0.001) with increasing visual
estimates of disease incidence, defined as the percentage of diseased spikelets (R2 = 0.83). Assessment of disease distribution and
severity  could  provide  useful  information  for  making  decisions  regarding  the  necessity  of  fungicide  application  and  estimate
potential yield loss due to the disease.
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INTRODUCTION

Rice blast disease, caused by the ascomycete Magnaporthe oryzae B. Couch, is considered to be the most important
fungal disease in rice (Oryza sativa L.) because of its worldwide distribution and its destruction [1, 2]. Rice blast causes
severe damage under cool summer conditions in northern Japan. The blast fungus affects the leaves, on which it causes
diamond-shaped white to gray lesions with dark green to brown borders surrounded by a yellowish halo. After heading,
the pathogen invades the panicles and infects the spikelet (spikelet blast), the rachis branch (rachis branch blast), and
the neck of  the panicle (neck blast).  Neck blast  is  usually the most  destructive symptom of the disease [2].  Spores
formed  in  the  upper  leaf  blast  lesions  are  the  inoculum  responsible  for  panicle  blast.  The  grain-filling  process  is
remarkably obstructed in these affected panicles and consequently, grain quality and quantity are drastically reduced
[2].

The ability to detect rice blast early and quantify severity accurately is one of the fundamental requirements in the
assessment  and  management  of  rice  blast,  since  timely  use  of  fungicides  is  one  of  the  most  reliable  methods  of
suppressing panicle blast in Japan [3, 4]. Visual assessments are commonly employed by trained pest management staff
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of local governments in Japan. However, it is impossible to accurately estimate the regional distribution and severity of
the disease in large areas, because this method is both labor-intensive and time-consuming. In addition, the ability for
raters to accurately detect plant disease may differ, as evidenced by Nutter et al. [5], who reported significant variation
among raters in visually assessing dollar spot severity in creeping bentgrass (Agrostis palustris Huds.). Fatigue, lack of
concentration, and bias among raters all increase the subjective nature of visual assessments of disease severity [5, 6].
Plants may respond to disease stresses in a number of ways, including leaf curling, stunting, wilting, defoliation, and
chlorosis  or  necrosis  of  photosynthetic  tissues  [7].  Furthermore,  plant  responds  to  abiotic  stress,  such  as  drought,
extreme temperatures, edaphic conditions, and high winds. Many of these responses are difficult to quantify and thus
make  it  difficult  to  assess  disease  severity  visually  with  acceptable  levels  of  accuracy  and  speed.  However,  the
aforementioned plant responses to infection often affect the amount and quality of electromagnetic radiation reflected
from the plant  canopy [7].  This  suggests  that  remote  sensing techniques  may provide an easily  available  record of
disease severity and a more objective assessment than is possible with visual assessments by raters [8 - 10]. Several
reports have reviewed the use of radiometric remote sensing in plant pathology [11 - 13].

Previous studies have shown the possibility of assessing leaf and panicle blast of rice using a radiometer [14, 15]. In
those  studies,  the  different  symptoms  of  rice  blast,  leaf  and  panicle  blast,  affect  reflectance  from  the  rice  canopy
differently. Two ratios significantly quantified the severity of leaf blast: R550/R675 (the reflectance at 550 nm divided
by the reflectance at 675 nm), and R570/R675 [15]. After heading, because the greatest change in spectral reflectance
occurred  after  the  yellow-ripe  stage,  analyses  of  reflectance  responses  were  divided  into  two  periods,  from  the
flowering to the dough stage and from the yellow-ripe to the maturity stage [14]. Ratios could be used as indicators of
panicle  blast:  R470/R570,  R520/R675,  and  R570/R675  all  decreased  significantly  as  the  severity  of  panicle  blast
increased at the dough stage [14]. At the yellow-ripe stage, R550/R970 and R725/R900 of potted plants were used to
estimate  the  severity  of  panicle  blast  in  terms  of  the  percentage  of  diseased  spikelets  in  the  laboratory  [14].  Thus,
ground-based  radiometer  is  effective  to  assess  the  severity  of  rice  blast,  however  this  method  is  not  suitable  for
measuring a lot of fields. Airborne imagery has been useful to detect and assess the disease severity over large crop
areas. More studies are necessary to determine whether these ground-based techniques could be extended to airborne or
satellite systems.

The advantage of the airborne measurement is to be able to acquire imagery at opportunistic times and has proven
useful in assessing disease severity. For example, aerial photographs were used to quantitatively analyze spatial patterns
of late blight in irrigated potato circles [16]. Airborne digital imagery was used to distinguish oak wilt disease in a live
oak  (Quercus  fusiformis)  population  and  to  assess  Rhizoctonia  crown  and  root  rot  severity  in  sugar  beet  [17,  18].
Hyperspectral  imagery  acquired  simultaneously  in  narrow  spectral  bands  may  allow  the  capture  of  specific  plant
attributes previously unavailable from broadband sensors [8]. Coops et al. [9] used airborne hyperspectral imagery to
asses Dothistroma needle blight of Pinus radiate D. Don. However, there have been no reports of using airborne sensor
data for the detection of panicle blast and measurement of its severity. The objectives of the present research were thus
to (i) assess the use of band ratios as an indicator of panicle blast using airborne hyperspectral scanners and (ii) quantify
the incidence of rice panicle blast over a wide cropping area.

MATERIALS AND METHODS

Airborne hyperspectral imagery was obtained on 15 September 2003. An image from the AISA Eagle hyperspectral
sensor (PASCO Co. Ltd, Tokyo, Japan) with 66 spectral bands (8.56 to 9.12 nm spectral bandwidth) between 430 and
1,000 nm was acquired at the dough stage of rice grain development. Hyperspectral data were acquired at an altitude of
1,440 m, with 1.5-m spatial resolution and a 38° field of view. Imagery was measured under cloudless conditions from
12 p.m. to 2 p.m., when the solar zenith angle was high [17, 19, 20]. Disease incidence was determined by estimating
the percentage of diseased spikelets through observation on a field basis. On 18 September 2003, we calculated the
percentage  of  diseased  spikelets  in  91  fields.  Disease  incidence  was  determined  by  calculating  the  percentage  of
diseased spikelets per plant. The values of 150 plants were used to calculate the average value of each field.

The study site was in Sanbongi, Miyagi Prefecture (38.3°N, 140.9°E), Japan, which were paddy fields along a river
drainage  basin.  Rice  paddies  in  the  study area  ranged from 0.05 to  1.0  ha  in  size.  The predominant  cultivars  were
'Hitomebore'. Rice seedlings were raised in the nursery for 20 to 30 days, then were transplanted into the fields in mid-
May under irrigation at a planting density of 25 to 28 seedlings per square meter. Fertilizer was basally applied at a rate
of 40, 13, and 25 kg ha-1 (N, P, and K, respectively) with an additional application at a rate of 10 and 8 kg/ha (N and K)
in mid-July. Heading and harvesting dates were in late August and early October, respectively. This region experienced
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cool in summer and increased rainfall after heading in 2003, creating favorable conditions for panicle blast infection.
Panicle blast occurred naturally in study area.

An example of the mean spectral response of a healthy and diseased rice plants in the 400 to 2,000 nm was shown
by Kobayashi et al. [15]. As the percentage of diseased spikelets increased, panicle reflectance also increased in the
visible (VIS: 400 to 700 nm) and mid-infrared regions (1,300 to 2,000 nm). In the near-infrared (NIR) region (700 to
1,300 nm), reflectance differences between uninfected and infected rice plants were small. Indices of simple ratio for
each field were calculated, their usefulness as indicators of disease incidence was assessed using the ERDAS IMAGINE
8.3 software (Leica, Atlanta, GA, USA). A simple ratio index divides the reflectance at one reference band (x) by an
index band (y), i.e., x/y. Regression analysis was used to determine whether a significant relationship existed between
disease incidence and the single band, band ratio, and normalized difference parameters derived from all bands. The
criteria used for model selection was the R2 (coefficient of determination) and P-value (probability). Disease incidence
in the study area was predicted using the significant relationship between disease incidence and spectral values.

RESULTS

Panicle blast occurred in all fields selected for assessment, and its incidence ranged from 0.4% to 84.4% of diseased
incidence. Fig. (1) shows the reflectance spectra of rice fields infected with blast fungus using airborne hyperspectral
sensor. As the percentage of diseased spikelets increased, the reflectance of rice plants from field increased in the blue
(400 to 510 nm) and red (615 to 700 nm) regions, and decreased in the green (510 to 570 nm) and NIR regions (Fig. 1).
Reflectance differences among disease incidences in the VIS region were smaller than the differences observed in NIR
region. The general spectral response of diseased rice fields using airborne hyperspectral sensor was roughly similar to
the spectral reflectance of diseased rice plants with ground-based radiometer [14].

Fig. (1). Spectral reflectance of rice plants infected with blast fungus (Magnaporthe oryzae) at the dough stage from fields in Miyagi
Prefecture, Japan. This is from an airborne hyperspectral sensor with 66 spectral bands (8.56 to 9.12 nm spectral bandwidth) between
430 and 1,000 nm. Disease incidence was determined by estimating the percentage of diseased spikelets through observation.

Regression  analysis  indicated  that  two  band  ratios  (R498to  515/R700  to  717  and  R472  to  489/R558  to  575)
increased  significantly  (P  <  0.001)  as  disease  incidence  increased  (R2  =  0.83  and  0.80)  (Fig.  2).  The  regression
coefficients were highly significant, but the coefficient of determination was highest for the regression of the R498 to
515/R700 to 717 ratio and disease incidence.
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Fig. (2). The relationship between a simple band ratio (y) obtained using data from the hyperspectral sensor and the incidence (x) of
rice panicle blast in each field at the dough stage. Disease incidence represents the percentage of diseased spikelets. (A), R498 to
515/R700 to 717: the reflectance at 498- to 515-nm divided by the reflectance at 700- to 717-nm. The regression is y = 0.0013x +
0.2902. P < 0.001. (B), R472 to 489/R558 to 575. The regression is y = 0.002x + 0.4572. P < 0.001.

Fig. (3). (A) True color composite of the study area with the AISA Eagle hyperspectral sensor bands centered at 655 nm (red), 558
nm (green) and 489 nm (blue). (B) Disease incidence visually assessed by three trained raters. (C) False color composite with the
band ratio R498 to 515/R700 to 717. Disease incidence was predicted using the linear regression equation shown in Figure 2A. The
arrows in photograph A point to the following fields: arrow 1, healthy rice field at the dough stage; arrow 2, rice field severely
affected by panicle blast; arrow 3, a soybean field.
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Fig. (3A) shows a true color composite of the study area with the bands centered at 655 nm (red), 558 nm (green)
and 489 nm (blue). Mildly affected rice fields are yellow-green (Fig. 3A, arrow 1), whereas severely affected fields
have a  reddish-brown tone (Fig.  3A,  arrow 2).  Soybean fields  are  dark green (Fig.  3A,  arrow 3)  and can be easily
discriminated from the rice fields. Fig. (3A) shows the disease incidence in each field visually assessed by the trained
raters. Example of the false-color image of the study area (i.e., predicted disease severity) obtained from the airborne
hyperspectral imagery are shown in Figs. (3C). We predicted disease incidence using the linear regression equation
shown in Fig. (3C). The comparison between ground truth data and the simple ratio-derived incidence image confirmed
the model capacity to predict the disease incidence accurately. Panicle blast was severe in the large fields of the study
area (Figs. 3B and 2A). Most of those fields had been used to grow soybeans as the preceding crop.

DISCUSSION AND CONCLUSION

At the dough stage, two band ratios exhibited significant correlations with disease incidence (R498 to 515/R700 to
717 and R472 to 489/R558 to 575). Our results demonstrated that hyperspectral imagery is a potentially useful method
for the quantitative assessment of panicle blast incidence. R470/R570 and R570/R675, which were based on sensitivity
maxima and minima, were effective in assessing disease severity with a radiometer [14, 21]. Dividing leaf reflectance
measured within a stress-sensitive waveband by reflectance measured within a relatively stress-in-sensitive waveband
may largely correct variations in irradiance, leaf orientation, irradiance angles, and shading [22]. The wavelengths used
in these ratios, which were determined by ground-based measurements, were similar to those in two band ratios (R498
to 515/R700 to 717 and R472 to 489/R558 to 575) identified using our airborne measurements. The results obtained for
canopy  reflectance  with  a  ground-based  radiometer  suggest  that  these  bands  are  also  suitable  for  use  in  airborne
hyperspectral measurements [14].

In speculating about the extension of techniques measured with ground-based radiometry to an airborne system to
monitor panicle blast incidence, it is important to remember that the band data acquired from aircraft can be severely
affected by atmospheric and measurement conditions such as the sun and view angles. Digital imaging within spectrally
narrow ranges such as those provided by a hyperspectral sensor may thus provide an improved capability to detect plant
disease [9].

Serious epidemics of rice blast  occurred in 1988, 1991, 1993, and 2003 in northern Japan and did considerable
damage to the local farm economy. To avoid future supply problems, it is important to be able to roughly predict the
yield loss caused by panicle blast that will occur before harvesting. In northern Japan, fungicides are commonly applied
to control panicle blast at the booting and full heading stages. If severe panicle blast occurs after heading, additional
fungicide will be applied at the milky grain stage. Early detection of panicle blast might thus allow managers to deploy
control procedures in a timely fashion. Assessment of disease distribution and severity in near-real-time at the dough
stage could provide useful information to support management decisions regarding the necessity for and appropriate
timing of fungicide applications.

In the future, leaf blast severity should be assessed using hyperspectral imagery, because the spores from the leaf
blast lesions serve as the inoculum that leads to the first panicle blast [15]. As grain ripening advanced after heading,
the responses of rice spectral reflectance changed regardless of the degree of blast infection [14]. In particular, because
the greatest change in spectral reflectance occurred after the yellow-ripe stage, the indices selected as indicators of
disease severity at the dough stage differed from those selected at the yellow-ripe stage with ground-based radiometer
[14].  It  may  be  that  these  ratios  selected  in  this  study  at  the  dough  stage  were  not  able  to  assess  the  panicle  blast
incidence after yellow-ripe stage. Panicle blast incidence should be assessed using hyperspectral imagery at the yellow-
ripe stage. Simulation models of rice growth and rice blast disease will soon be combined with remote-sensing data to
produce more accurate severity estimates [3, 4]. Oudemans et al. [23] first used a geographic information system (GIS)
combined  with  remote  sensing  using  satellite  multispectral  imaging  to  detect  yield  losses  in  cranberry  (Vaccinium
macrocarpon). Airborne imagery should thus be integrated with GIS to include cultural conditions, crop rotation, and
fungicide application data [24, 25].
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